| Point of | Compare the structure and function of starch, glycogen and cellulose. | | | |-------------------------|--|--|---| | Comparison | Starch | Glycogen | Cellulose | | Monomer | α-glucose monomers. | α-glucose monomers. | β-glucose monomers. | | Bonds between monomers | $\alpha(1-4)$ glycosidic bonds in amylose. $\alpha(1-4)$ glycosidic bonds within a branch and $\alpha(1-6)$ glycosidic bonds at a branch point in amylopectin. | $\alpha(1-4)$ glycosidic bonds within a branch and $\alpha(1-6)$ glycosidic bonds at a branch point. | β(1-4) glycosidic bonds | | Orientation of monomers | All glucose units have the same orientation . | All glucose units have the same orientation. | Alternate glucose units are rotated 180° with respect to each other. | | Structure of molecule | Amylose is helical. Amylopectin is helical and branched. | Glycogen is helical and more extensively branched than amylopectin. | Cellulose is a long straight chain. | | Bonds between molecules | No interchain hydrogen bonding. | No interchain hydrogen bonding. | -OH groups projecting outwards in both directions allow interchain hydrogen bonding leading to microfibril formation. | | Function | Starch is a compact energy storage molecule in plants . | Starch is a compact energy storage molecule in animals . | Cellulose is a structural molecule that provides high tensile strength to the cell wall of plants. | | How do the structures of starch and glycogen make then good storage molecules? | | | | |---|--|--|--| | Structure | Function | | | | They are large molecules made up of many α- glucose monomers linked by α(1-4) glycosidic | It is a large energy store that can be hydrolyzed to yield many glucose molecules that can be used as a respiratory substrate to yield ATP . | | | | bonds. | Enzymes like amylase that hydrolyze these bonds are commonly available . Glucose units readily released for respiration to yield energy . | | | | They comprise of helices. | Helices can pack many glucose subunits per unit volume , allowing for more compact storage. Most –OH groups in the helix are involved in intramolecular hydrogen bonding and hence few –OH groups are available for hydrogen bonding with water. Hence, they are insoluble in water and do | | | | | not affect the water potential of cells. | | | | | Branching presents multiple branch ends for hydrolytic action by amylases . Thus, more glucose molecules can be released and more ATP can be generated by respiration per unit time . | | | | Amylopectin and glycogen are branched with $\alpha(1\text{-}6)$ glycosidic bonds at branch points. | Branching optimizes the packing of many glucose subunits per unit volume allowing for more compact storage. | | | | | Branching reduces the accessibility of water and thus reduces the solubility of the molecule in water. Hence, they do not affect the water potential of cells. | | | | How does the structure of cellulose make it a good structural molecule? | | | | |---|---|--|--| | Structure | Function | | | | Alternate β -glucose units are rotated 180° with respect to its neighbors forming a straight chain. | There are free -OH groups projecting out in both directions which can hydrogen bond with -OH groups of adjacent parallel cellulose molecules, forming microfibrils which have high tensile strength and confer strength to the cell wall. Most -OH groups are involved in interchain hydrogen bonding and only the surface of the microfibril has -OH groups that can form hydrogen bonds with water. Hence, cellulose is insoluble in water and does not affect the water potential of cells. | | | | The meshwork of microfibrils that form the cell wall have a porous structure. | The cell wall is freely permeable to water and solutes, allowing the movement of substances in and out of cells. The cell wall is strong and rigid and prevents the plant cells from bursting due to osmotic stress . | | | | Cellulose contains β -glucose residues linked together by $\beta(1\text{-}4)$ glycosidic bonds. | Cellulases that recognize and hydrolyze $\beta(1-4)$ glycosidic bonds are found in very few organisms. Hence, cellulose cannot be hydrolyzed and used as a respiratory substrate. | | |