Carbohydrates | Monosaccharides | Forms | In α -glucose, the $-OH$ group on C1 is on opposite sides as C6.
In β -glucose, the $-OH$ group on C1 is on the same side as C6. | |-----------------|------------------------|---| | | | What is the significance of the molecular structure of monosaccharides? | | | Molecular
Structure | They are small in size . Hence, they are readily soluble in water as many hydroxyl groups can form hydrogen bonds with water. Hence, they are transported easily in water. Pentoses and hexoses can exist as rings , which are stable building blocks for larger molecules. | | | | Ring structures exhibit α and β isomerism. This increases the diversity of monosaccharides which can become building blocks for different molecules. | | | | They possess a free carbonyl group , giving them reducing ability and making them a suitable respiratory substrate . | | Disaccharides | Glycosidic
Bond | A covalent bond formed between two monosaccharides by a condensation reaction that involves the loss of a water molecule . Hydrolysis involves the addition of one molecule of water to break a | | | | glycosidic bond. This is catalyzed by an enzyme . Maltose (maltase): 2 α -glucose joined by an $\alpha(1-4)$ glycosidic bond. | | | Examples | Lactose (lactase): glucose and galactose. Sucrose (sucrase, invertase): α -glucose and β -fructose joined by an $\alpha(1-2)$ glycosidic bond. | | | Reducing
Sugars | Maltose and lactose are reducing sugars while sucrose is not. | | | | This is a test for reducing sugars. Benedict's solution is an irritant. Goggles and gloves should be worn when carrying out the Benedict's test. | | | | Describe how a test for reducing sugars is carried out. | | | | Carry out Benedict's test by placing the sample solution in a test tube and adding an equal volume of Benedict's reagent. Shake mixture and heat it in a boiling water bath for 3-4 minutes. A brick-red precipitate is formed if a reducing sugar is present. | | | Benedict's Test | Describe how a test for non-reducing sugars is carried out. | | | | Carry out Benedict's test first by placing the sample solution in a test tube and adding an equal volume of Benedict's reagent. Shake mixture and heat it in a boiling water bath for 3-4 min. Then carry out acid hydrolysis by boiling an equal volume of a new sample of test solution with dilute hydrochloric acid for 1 min. Cool the contents of tube and neutralize the acid with sodium bicarbonate solution. Repeat the Benedict's test on the sample. If only non-reducing sugar is present, then the initial Benedict's test should give a negative result with the solution remaining blue . After hydrolysis, Benedict's test should produce a brick red precipitate . |