Bacteria | | Describe the process of binary fission. | |----------------|--| | | Binary fission is the process by which bacteria replicate asexually . DNA replication begins at the origin of replication which is made up of a specific sequence of nucleotide bases. The DNA double helix separates and forms a replication bubble that is made up of two single stranded DNA. Replication takes place outwards from the origin in both directions with two replication forks. | | | DNA polymerase adds free nucleotides via complementary base pairing between the template strand and free deoxyribonucleoside triphosphates where adenine forms two hydrogen bonds with thymine and guanine forms three hydrogen bonds with cytosine . The new DNA strand is synthesized in the 5' to 3 . | | Binary Fission | One of the daughter strands known as the leading strand is synthesized continuously towards replication fork in the 5' to 3' direction. The other strand known as the lagging strand is synthesized discontinuously away from the replication fork, giving rise to Okazaki fragments . DNA ligase catalyzes the formation of phosphodiester bonds between the Okazaki fragments , sealing the nicks . | | | As the chromosome replicates, the two newly formed origins of replication move to opposite poles of the cell and attach to the plasma membrane . The cell also elongates to prepare for division. | | | With the completion of replication, an interlocking structure is made up of the two daughter DNA molecules as the bacterial chromosome is circular with no free ends. Topoisomerase cuts , separates and reseals the two DNA molecules. Invagination of the plasma membrane and the deposition of new cell wall divide the parent cell into two genetically identical daughter cells . | | DNA Transfer | T | ransformation | Fragments of foreign naked DNA from lysed bacterial cells in the surrounding medium are taken up by a competent bacterial cell via surface proteins . The foreign DNA is incorporated into the bacterial chromosome , replacing the homologous region via homologous recombination , resulting in a recombinant cell and possibly a different allele expressed in the bacterial cell. | |--------------|--------------|-----------------------------|--| | | ction | Generalized
Transduction | A phage infects a bacterium , injecting its viral genome into the host cell and undergoes the lytic cycle . The bacterial chromosome is hydrolyzed into small fragments, one of which may be randomly packaged into a capsid head during the assembly of new viruses. Upon cell lysis , the defective phage will infect another bacterium and inject bacterial DNA from the previous host cell into the new bacterium. The foreign bacterial DNA can replace the homologous region in the recipient cell's chromosome if homologous recombination takes place, possibly allowing the expression of a different allele from the previous host. | | | Transduction | Specialized
Transduction | A temperate phage infects a bacterium , injecting its viral genome into the host cell. The viral DNA is integrated into bacterial chromosome forming a prophage which may be improperly excised to include adjacent segments of bacterial DNA during an induction event. The bacterial DNA may be packaged into a capsid head during the assembly of new viruses. Upon cell lysis , the defective phage will infect another bacterium and inject bacterial DNA from the previous host cell into the new bacterium. The foreign bacterial DNA can replace the homologous region in the recipient cell's chromosome if homologous recombination takes place, possibly allowing the expression of a different allele from the previous host. | | | Conjugation | | The sex pilus of a F + bacterial cell makes contact with a F- cell and retracts to bring the F- cell closer so a mating bridge is formed between the two cells. One of the two strands of the F plasmid DNA in the F+ cell is nicked and transferred from the F+ cell to the F- cell through the mating bridge via the rolling circle mechanism as the other DNA strand is used as a template for elongation. The single stranded F plasmid DNA circularizes in the F- cell and is used as a template to synthesize a complementary strand , producing a double-stranded F plasmid, resulting in the recipient cell becoming a F+ cell . | | | Inducible
Operon | An inducible operon catalyzes catabolic processes which involve the breaking down of substances. The lac operon is an inducible operon since when the inducer allolactose binds to the repressor , the repressor is inactivated and does not bind to the operator , allowing transcription of the structural genes to take place. | |--|---------------------|---| | | | The lacI gene is the regulatory gene located upstream of the operon with its own promoter and terminator sequences. It codes for the production of lac repressor protein . | | | Structuro | The operator sits between the promoter and structural genes to control the transcription of the structural genes. It is the binding site of the lac repressor protein . | | _ | Structure | The promoter is the binding site for RNA polymerase in order to initiate transcription. | | Expression on | | The structural genes lacZ , lacY and lacA code for β-galactosidase , permease and transacetylase respectively. β-galactosidase catalyzes the hydrolysis of lactose to allolactose, while permease is a membrane transport protein that enables cells to take up lactose . | | Regulation of Gene Expression Lac Operon | Function | In the absence of lactose, the regulatory gene lacI is constitutively transcribed, resulting in the continued production of the active lac repressor protein which binds to the lac operator sequence via its DNA-binding site. Hence, RNA polymerase cannot bind to the promoter to initiate translation, and hence the lac operon is switched off and the structural genes are not transcribed. However, a basal level of β -galactosidase and permease is present within the cell because repression of the lac operon by the repressor is leaky. In the presence of lactose, the small number of permease present can transport lactose from the surrounding medium into the cell. Some lactose will be converted to allolactose by β -galactosidase. Allolactose then acts as an inducer molecule which binds to the repressor protein at its allosteric site. This alters the conformation of the DNA-binding site of the repressor such that the repressor is inactivated and is no longer complementary in shape and charge to the operator and thus cannot bind to the operator. This allows RNA polymerase to bind to the promoter and transcribe the structural genes to form a polycistronic mRNA. In the absence of glucose, high cAMP levels result cAMP binding to the catabolite activator protein (CAP) at its allosteric site, activating it and forming a cAMP-CAP complex which binds to the CAP-binding site within the promoter strengthening the affinity of the promoter for RNA polymerase. This increases the rate of transcription, turning on the operon, increasing the synthesis of β -galactosidase, permease and transacetylase for the metabolism of lactose. | | pression | Lac Operon | Significance | Glucose used in preference to lactose as a respiratory substrate since there is considerable energy expenditure required to synthesize additional lactose-metabolizing enzymes such as β -galactosidase. The lac operon is under dual control: negative regulation by the lac repressor and positive regulation by the catabolite activator protein in order to ensure that lactose-metabolizing enzymes are only produced when lactose is present and glucose is absent . | |----------|------------|-----------------------|---| | | | Repressible
Operon | A repressible operon catalyzes anabolic processes which involve the synthesis of molecules. It avoids the devotion of resources to unnecessary synthetic activities once the end product is present in sufficient levels. | | | Trp Operon | Structure | The trpR gene is the regulatory gene located upstream of the operon with its own promoter and terminator sequences. It codes for the production of trp repressor protein . The operator is within the promoter and controls the transcription of the structural genes. It is the binding site of the lac repressor protein . The promoter is the binding site for RNA polymerase in order to initiate transcription. The structural genes trpE , trpD , trpC , trpB and trpA code for products involved in the synthesis of the amino acid tryptophan . | | | | Function | The trp repressor is synthesized in its inactive form with little affinity for the trp operator. Hence, RNA polymerase is able to bind to the promoter and initiate transcription. In the presence of the corepressor tryptophan, tryptophan binds to trp repressor at its allosteric site to change the repressor to its active form which is complementary in shape and charge to the trp repressor binding site on the operator . The active repressor binds to the operator, preventing the binding of RNA polymerase to the promoter to initiate transcription, hence preventing the expression of the trp operon | | | Importance | | Explain the importance of regulation of gene expression. Regulation of gene expression allows the bacteria to make economical use of energy and resources as the gene is expressed and the protein produced only when necessary. It also enables the bacteria to respond appropriately and rapidly to changes in the environment. This convers a selective advantage to bacteria who are able to regulate gene expression. |