
CHEMICAL EQUILIBRIUM

Reversible Reactions: (denoted by ≒)

- → proceed in both forward and backward directions
- \rightarrow reach **equilibrium state** w/ both rxt and pdt e.g. Contact Process: $2SO_2(g) + O_2(g) \leftrightharpoons 2SO_3(g)$

Equilibrium Law + Constants:

$$aA + bB = cC + dD$$

At any given time, rxn quotient,
$$Q_c = \frac{[C]^c[D]d}{[A]^a[B]^b}$$
 changes as rxn.

proceeds towards equilibrium as conc. change until equilibrium is reached

ightarrow K_c is when Q_c becomes **constant** at a given temperature

Value of K_c is **NOT** affected by:

- → change in **concentrations** of rxt. and pdt.
- → change in **total pressure** of reaction system
- → presence/absence of catalyst

Magnitude of Kc \Rightarrow extent of rxn. <u>NOT</u> rate of reaction (larger Kc \Rightarrow position of equilibrium lies to the right)

Homogenous Equilibrium:

→ substances involved are in the same phase

$$e.g A (g) + B (g) \Leftrightarrow C (g) + D (g)$$

Heterogenous Equilibrium:

- → substances involved are not in the same phase
 - K_c ⇒ concentration/partial pressure of pure solids and pure liquids OR conc. of pure water as solvent
 - ⇒ **CONSTANT** at a given temperature

I.C.E Table

	SO ₂ Cl ₂	SO ₂	C _{l2}	Total
Initial amt.	а	0	а	а
Change in amt.	-0.2a	+0.2a	+0.2a	+0.2a
Equilibrium amt.	0.8a	0.2a	0.2a	1.2a

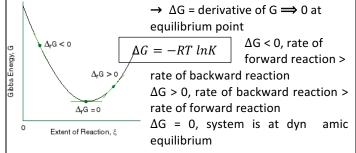
→ When pressures are involved, degree of dissociation involved

Mole fraction	2/3	1/6	1/6	1	
Equilibrium PP	2p/3	p/6	p/6	р	

 \rightarrow As long as temperature is constant, K_c is also constant.

Dynamic Equilibrium:

 \rightarrow state in a reversible system in which Rate_f = Rate_b \neq 0 and no net change in macroscopic properties occurs


- 1. **No net change** through particles continue reacting
- 2. Equilibrium can only be achieved in a **closed system**
- 3. Equilibrium can be attained from either direction

Same equilibrium state attained from any amount of rxt.,pdt.

→ if temperature remains constant

Gibbs Free Energy + Position of Equilibrium:

- → $\Delta G \ominus$ predicts **thermodynamic feasibility** of a reaction
 - Mixing of substances ⇒ increase in entropy ⇒ decrease in overall G
- ∴ G is at minimum at dynamic equilibrium under constant temperature and pressure

- \rightarrow Side with lower G = more proportion at equilibrium position e.g. if $G_{rxt} < G_{pdt}$, equilibrium has more rxt. than pdt.
- ∴ position of equilibrium depends ONLY on ∆G
- \rightarrow Δ G<0, K>1 = equilibrium position lies more to the **right** (If K>>1, reaction goes to completion)
- \rightarrow Δ G>0, K<1 = equilibrium position lies more to the **left** (If K<<1, reaction never happens)

Le Chatelier's Principle:

 when a system in equilibrium is subject to a <u>change</u>, the system will <u>counteract the change to re-establish</u> <u>equilibrium</u>