Units 1 & 2; Physical Quantities, Units and Measurement Techniques Year 3 Physics Notes 2013

Accuracy & Precision

Precision

- Refers to how close together a group of measurements are
- Has nothing to do with the actual value; hence readings can be completely inaccurate but very precise

Accuracy

- Refers to how close the measured value is to the actual value
- Can be determined by just one measurement

Dartboard Analogy

Dartboard Analogy

- Often used to demonstrate accuracy and precision
 - Accuracy will be measured by how close the shots are to the bull's eye
 - Precision will be measured by how close they are together, no matter the distance from the bull's eye

The International System of Measurements (SI)

- Seven SI base units, for length, mass, time, current, temperature, amount of substance and luminous intensity
- Everything that is measurable can be measured by these or units derived from these

• These are the basic SI units

TABLE 1.4 SI Base Units		
Physical Quantity	Name of Unit	Abbreviation
Mass	Kilogram	kg
Length	Meter	m
Time	Second	s ^a
Temperature	Kelvin	K
Amount of substance	Mole	mol
Electric current	Ampere	Α
Luminous intensity	Candela	cd

*The abbreviation sec is frequently used.

Used in front of base units All prefixes represent some factor of 10, and can be used with any of the SI base units

Factor	Prefix	Sym bol	Factor	Prefix	Symbol
1018	exa	E	10.1	deci	d
1015	peta	Р	10 ⁻²	centi	c
10 ¹²	tera	Т	10 ⁻³	milli	m
109	giga	G	10-6	micro	μ
106	mega	М	10.9	nano	n
10 ³	kilo	k	10.15	pico	р
10 ²	hecto	h	10.12	femto	f
10	deca	d	10.18	atto	a

Significant Figures & Decimal Places

- If a number does not have a decimal point, and ends with 0, it is unclear as to how many S.F it has
 - Eg. 20 cm, can be interpreted as 2 S.F, as it is exactly 20 cm, or it can be interpreted as 1 S.F, since the number 18 had been rounded up to 1 S.F

Calculating with SF & DP

- The general rule is to round the answer to the least precise measurement used in calculation
- Decimal places in addition & subtraction
 - > 28.7 + 2.75 = 31.5 (calculated value: 31.45)

> 0.04529 + 0.0028 = 0.0481 (calculated value: 0.04809)

Calculating with SF & DP

- Significant Figures with multiplication and division
 - > 2.4 x 8.23 = 20 (calculated value= 19.752)

> $0.0872 \times 7.552 = 0.659$ (calculated value = 0.6585344)

Unit 3: Waves Year 3 Physics Notes 2013

Introduction

- Described as a disturbance that travels through a medium from one location to another
- Considered an energy transport phenomenon
- Transports energy without transporting matter

Introduction

Mechanical Waves require a medium through which they propagate
EM waves do not require any medium; they can travel even through vacuum

Definition of Terms

- Displacement Distance of oscillating particle in a wave from its equilibrium position
- Amplitude Maximum displacement of the oscillating particle in a wave from equilibrium position
- Period (T), time taken to complete one oscillation of wave

Definition of Terms

- Frequency (f) is the number of oscillations made by the wave per unit time. Measured in Hertz (Hz)
- F = 1/T
- Crests & Troughs Highest and Lowest points on a transverse wave
- Wavelength (λ) is the distance between corresponding points in two successive crests or troughs

Wave Speed

Particles of a wave do not travel with the propagation of the wave; they only vibrate about their equilibrium positions with different phases within one wavelength

- In a time of one period, the waveform moves a distance of one wavelength
- Velocity = Wavlength / Period

Therefore, velocity = frequency x wavelength

Transverse & Longitudinal Waves

 A longitudinal wave is a wave in which particles of the medium move in a direction parallel to the direction of travel of the wave

> Eg. Sound Waves

 A transverse wave is a wave in which particles of the medium move in a direction perpendicular to the direction of travel of the wave

Eg. EM waves

Unit 4; Sound & C.R.O Year 3 Physics Notes 2013

Propagation of Sound

 Sound waves are longitudinal
 Comprises of a series of compressions and rarefactions
 Propagate energy from one point to another

Sound and Medium

- Relationship between medium type and speed of sound
 - The closer the particles are to each other in the object, the faster the speed of sound
 - > Hence, sound travels fastest in solids and slowest in air

Echoes

When you hear the sound after it has hit a surface and is on its way bacl
Formula
V = (2xdistance)/t

Pitch & Loudness of Sound

The loudness of sound is dependent on the amplitude of the sound wave; the larger the amplitude, the greater the amount of energy carried, and therefore, the sound is loueder
The pitch of sound (How low of high a

Ine pitch of sound (How low of high a sound is) is dependent on the frequency of the wave. A sound wave of higher frequency produces a higher pitch note

Doppler Effect

As a sound approaches, the sound waves are closer together
Causes the wavelength to be shorter
Hence, the pitch of the sound increases as the sound approaches you

Timbre

Quality of a sound

- For example, a guitar and a piano playing at the same loudness and pitch may produce different sounds
- The difference is due to a difference in timbre
- Timbre is dependent on waveform

Ultrasound & Infrasound

The audible range of frequencies for an average human being is 20Hz – 20kHz
 This range decreases as we grow older though, since our ears lose sensitivity to the extreme ends of the frequency range

Ultrasound and Infrasound

- Sounds above the upper hearing limit → Ultrasound
- Sounds below the lower hearing limit → Infrasound
- Though we aren't able to hear them, there are several applications
 - > Ultrasounds used for sonography

Echoes & Reverberations

- Echo \rightarrow Reflection of sound
- When the surface is rigid and smooth, the fraction of sound reflected is larger
- When the surface is soft and irregular, the fraction is smaller
- Energy not reflected is probably absorbed or transmitted

Echoes & Reverberations

- Sound reflects from a smooth surface the same way light does
- When there are multiple reflections of sound, reverberation occurs
- Applications
 - > Acoustics;
 - Eg. In an auditorium, a balance must be found between absorption and reverberations

Cathode-Ray Oscilloscope

 Plots a graph of voltage against time
 Scales on x and y axis can be adjusted using the time base and the voltage gain controls

Unit 5; EM Spectrum Year 3 Physics Notes 2013

Properties

Produced by the simultaneous vibration of electric and magnetic fields
All EM waves are transverse waves
Travel through vacuum at the speed of light (3 x 10^8)

Radio Waves

Longest wavelength (Longer than 1m)

- Therefore, frequency is lowest (less than 300 megahertz)
- Applications
 - > Radio & TV communication
 - Mobile Phones
 - > Wireless Networking

Microwaves

 Wavelength between 1mm and 1m
 Frequencies between 300 megahertz and 300 gigahertz

- Applications
 - > Telephones
 - Satellite Television
 - Traffic Speed Camera
 - > Microwave

Infra-red waves

Wavelengths between 760nm and 1mm
 Frequencies between 300 gigahertz and 400 terahertz

- Applications
 - > Intruder Alarms
 - > Night Vision
 - > TV remote controllers

Visible Light

Wavelengths between 380 and 760 nm
 Frequencies between 400 and 800 terahertz

- Applications
 - > Optical Fibres
 - > Telecommunication
 - Medical uses

Ultra-Violet

Wavelengths between 10 and 380 nm
Frequencies between 400 and 800 terahertz and 30 petahertz

Applications

- > Sun beds
- > Sterilisation
- Forensics
- Security
 - Checking Fake bank notes

Wavelengths between 0.01 and 10nm
Frequencies between 30 petahertz and 30 exahertz

- Applications
 - Hospital use
 - > Astronomy
 - > Airport Security

Gamma Rays

Shortest Wavelength (<0.01nm)</p>

- Therefore, largest frequency higher than 30 exahertz
- Applications
 - Cancer treatment
 - Sterilising Medical Equipment
 - Change properties of semi-precious stones

Effects of Absorbing EM waves

All EM waves carry energy

- Hence an object that absorbs EM waves will increase in energy by
 - Getting hotter (Microwave)
 - By getting ionised (Produce free electrons)
 If a body absorbs high-energy waves (UV, X Rays, Gamma), living cells and tissues can be damaged

Unit 6: Lenses Year 3 Physics Notes 2013

Refraction of Light

Occurs because light travels at different speeds in different media

- Less Dense → More dense = Bend Towards
- More Dense -> Less Dense = Bend away
 Greater the refractive index, the slower the speed of light

Formulae

- ni sin (incident angle, i) = nr sin (refracted angle, r)
 - > n1 and n2 refer to the refractive indexes of the two media

Thin Converging Lenses

- Principal Axis: Line passing through centre of lens
- Focal Point: A point on the principal axis where the lines parallel to the principal axis converge after going through the lens
- Focal Length: The dist between principal focus and centre of the lens

Linear Magnification

Ratio of image size to the object size
If the image is larger than the object, the magnification factor is larger than 1
If the image is smaller, the magnification factor is smaller than 1

Lens Equation

1/f = 1/U + 1/V F = focal length U= object distance V= image distance

Ray Diagrams; Camera

Ray Diagram; Spotlight

Ray Diagram; Projector

Ray Diagram; Photocopier

Ray Diagram; Magnifying Glass

Ray Diagrams

- Camera Image; Real, Inverted, Diminished
- Spotlight: Image formed at infinity; real and inverted
- Projector: Real, Inverted, Magnified
- Photocopier: Real, Inverted, Same size
- Magnifying Glass: Virtual, Upright (As it grows closer to F, the larger it gets
 Toloscopo: Pool, invorted, diminished
- Telescope: Real, inverted, diminished

Compound Microscope

- Made up of 2 converging lens; the objective lens (nearer to the object being observed) and the eyepiece (nearer to the observer)
- Objective lens produces a real image, and the eyepiece produces a virtual larger image of the first image

 Magnifying power of the microscope is the product of the magnifications factors of the objective lens and the eyepiece

Far-Sightedness

 Result of an abnormally short eyeball or the lens being too weak.

- Image formed behind the retina, hence out of focus
- Convex lens pulls the image towards the surface of the retina

 Far-sighted guy would have sharper vision under water

Near Sightedness

Result of an abnormally long eyeball or the eye lens being too strong
Image of a distant object falls in front of the retina

 Diverging lens help to push the image back to the retina

Unit 7; Kinematics Year 3 Physics Notes 2013

Displacement, Speed and Velocity

Displacement: Distance moved in a specified direction

- Speed: Rate of change of distance with respect to time
- Velocity: Rate of change of displacement with respect to time

Instantaneous & Average Velocity

- Instantaneous Velocity: Rate of change displacement at a particular instant of time
- Given by the gradient of the tangent at a particular period of time

 Average velocity is the total displacement divided by the total time taken

Acceleration

 Instantaneous acceleration is defined as the rate of change in velocity at a particular instant of time

- When the acceleration remains constant, the average velocity is given by;
 - > Average Velocity = (u+v)/2
 - Where u is the initial velocity and v is the final velocity

Acceleration

Acceleration = (final velocity – initial velocity) / time

It hence follows that displacement (s) =

> $\frac{1}{2} (U + V)^{\dagger}$

> Where t is the time taken

Graphical Representations

Displacement Time Graph

- Gradient = Velocity
- Straight horizontal line means it is moving at a constant velocity

Graphical Representations

Velocity-Time Graph

- Gradient = Acceleration
- > Area = Displacement
- Straight line means that there is constant acceleration

Acceleration-Time Graph

Area = Change in Velocity

Air Resistance and Terminal Velocity

- The faster the object drops, the greater the air resistance
- The weight of the person and the air resistance are opposite forces
- When the air resistance is equal to the weight, the resultant force becomes 0

• F = ma

 Since mass is a constant, and F is now 0, acceleration becomes 0 as well

This is known as terminal velocity

 Resistance is proportionate to velocity in calm conditions and (velocity)^2 in turbulence

Unit 8; Scalars & Vectors Year 3 Physics Notes 2013

Difference

Scalars – Fully described by the magnitude alone Vectors – Fully described by both a magnitude and a direction