Topic 2: Kinematics		
Distance	Total length covered by a moving object	
	irrespective of the direction of motion.	
Displacement	Linear distance of the position of the moving	
	object from a given reference point.	
Speed	Distance travelled by the body per unit time.	
Velocity	Speed in a specific direction.	
Acceleration	Rate of change of velocity.	
Terminal velocity	Constant velocity that is reached by a falling	
	object when the drag force equals in magnitude	
	to the force that is accelerating the object.	
Drag force	Retarding force that is due to air resistance.	
	(Drag force proportional to speed of object	
	provided density of air constant)	
Force	Push or pull.	
Inertia	Resistance to a change in the state of rest or	
	motion of the body, when a force is applied.	
Newton's laws of	1. An object will remain at rest or an object in	
motion	motion will continue in motion at constant	
	speed in a straight line in the absence of a	
	net force acting on it (when the net force	
	acting on it is zero).	
	2. The rate of change of momentum of a body	
	acting on it and takes place in the direction	
	of the force	
	When two hodies A and B interact the	
	force that A everts on B is equal and	
	onnosite to the force that B events on A	
Friction	Force that opposes the relative motion of two	
Thetion	surfaces	
Static friction	Surfaces prevented from relative motion (they	
	are at rest).	
Dynamic/kinetic	Surfaces are moving relative to each other.	
friction		
Work	Force multiplied by displacement in the	
	direction of the force.	
Energy	Capacity to do work.	
KE	Energy by virtue of motion.	
PE	Energy stored in a body as a consequence of:	
	i) Position (raised object has GPE)	
	ii) Condition (stretched elastic band has EPE)	
	iii) Shape	
Principle of	Energy cannot be created or destroyed but may	
conservation of	be converted from one form to another but the	
energy	total amount remains constant in the system.	
Efficiency	Ratio of the useful energy output to the energy	
	input.	
Power	Rate of doing work.	
Linear momentum	(Of an object) is defined as the product of its	
	mass and velocity	

Impulse	Change in momentum caused by a force.		
Law of conservation	The total momentum of a closed system is		
of momentum	constant, provided no external resultant force		
	act on it.		
Topic 3: Thermal Phys	ics		
Thermal Equilibrium	Two objects placed in thermal contact will		
	eventually come to the same temperature.		
Absolute	Zero kelvin at absolute zero (temperature at	T =	К
temperature	which all matter has minimum KE) and 273.16 K	$\theta + 273$	
	at the triple point of water.		
Internal Energy	Total of the PE (arising from the forces between	$U = \frac{3}{2}nRT$	J
(for ideal gases, only	molecules) and random KE of all the particles in	2	
dependent on temp)	the substance.		
Specific heat	Energy required to raise a unit mass of	$c = \frac{Q}{Q}$	J kg ⁻¹ K ⁻¹
capacity	substance by 1K.	$\tilde{m}\Delta T$	
Thermal capacity	Energy required to raise an object's	$C = \frac{Q}{Q}$	J K ⁻¹
	temperature by 1K.	ΔT	
КМТ	PV = nRT	Solids are b	better
	 Extremely small particles 	thermal co	nductors
	- Constant motion	than fluids:	: particles
	- Elastic collisions (KE conserved)	are closely	packed in
	- No intermolecular attractive forces	solids	
Solids	 Fixed volume and fixed shape 		
	 Held together in position by bonds 	KE increase	es with
	- Vibrate in fixed positions	temp, no c	hange in PE.
Liquids	 Fixed volume and indefinite shape 	After phase	e change
	 Not completely in fixed positions 	complete,	
	- Close to each other but free to move around	intermolec	ular PE
Gases	- Expand to fill container	increases t	o break
	- Not fixed in position	bonds.	
	- Forces weak		1
Latent heat	Energy required for a material to change phase.		
Specific latent heat	Amount of energy per unit mass absorbed or	$L = \frac{Q}{Q}$	J kg ⁻¹
	released during a change in phase.	т	
" of fusion	Heat required to change unit of mass of material		
	from solid to liquid without a change in		
	temperature.		
" of vaporisation	Heat required to change unit mass of material		
	from liquid to vapour without a change in		
	temperature.		
Temperature	Measure of the average KE of the molecules in a		
	substance.		
Pressure	(Of a gas) is defined as the force exerted over an	$P = \frac{F}{A}$	N m⁻²
	area.	$1 \overset{A}{Nm}_{-2}$	
		$=\frac{1}{3}V^{-}C^{2}$	
		$=\frac{1}{3}\rho \overline{c^2}$	
Pressure Law	P/T = constant V	5	
-	- Temp increase, molecules higher avg KE		
	- Fast moving molecules \rightarrow greater change in		
	momentum → force greater		

	- Fast moving molecules → hit walls more often		
	per second		
	➔ Total force on wall increases ➔ Pressure		
	increase		
Charles' Law	V/T = constant P		
	- Temp increase, faster moving molecules,		
	greater force		
	- Vol increase, rate of collisions on a unit area		
	decreases		
	➔ Avg force per unit area same ➔ pressure		
	same		
Boyle's Law	pV = constant T	$P_1V_1 = P_2V_2$	
	- Constant temp, constant avg speed, constant		
	force		
	- Vol increase, rate decreases, avg total force		
	decreases		
	➔ Avg total force decreases ➔ Pressure		
	decreases		
Topic 4: Waves			
Displacement	Distance that the object has moved from its rest	<i>x</i> =	
	position in a stated direction.	x _o sinωt	
		x =	
		x _o cosωt	
Amplitude	Maximum magnitude of displacement from the		
	equilibrium position.		
Wavelength	Distance between any two successive points		
	which are in phase.		
Frequency	Number of complete oscillations per unit time.		Hz
	Number of wave crests per unit time.		
Period	Time taken from one complete oscillation.		
Wave speed	Distance the wave profile moves per unit time.		
	Derivation:		
	$v = \frac{S}{-}$		
	t		
	For one cycle, time taken is 1 and distance		
	covered is one wavelength, thus		
	$v = \frac{\pi}{\pi}$		
	Since $T = 1/f$		
	$v = f\lambda$		
Angular frequency		$\omega = 2\pi f$	
Simple harmonic	Oscillatory motion of a particle whose	$a = -\omega x^2$	
motion	acceleration is directly proportional to its		
	displacement from the equilibrium position and		
	this acceleration is always directed towards that		
	position.		
Energy changes in	Total energy: constant		J
SHM			-
	$TE = \frac{1}{2}m\omega^2 x_o^2$		
	KE: max at x = 0 (v is max), min at x = x_o (v is		
	min)		

	$KF = \frac{1}{2}m\omega^2(r^2 - r^2)$		
	$RL = \frac{1}{2} m \omega \left(x_0 - x \right)$		
	PE: max at $x = x_0$, min at $x = 0$		
	$PE = \frac{1}{2}m\omega^2 x^2$		
Wave pulse	An isolated disturbance, traveling through an		
	otherwise undisturbed medium.		
Continuous wave	Produced when a medium is disturbed in a		
	regular periodic way.		
Progressive/travellin	Movement of a disturbance from a source which		
g waves	transfer energy but not material to places		
	around it. E.g. EM waves and mechanical waves		
Transverse wave	Displacement of the particles in a medium is		
	perpendicular to the direction of the wave		
	motion.		
Longitudinal wave	Displacement of the particles in a medium is		
	parallel to the direction of the propagation of		
	the wave.		
Sound	A form of energy produced by vibrating sources		
	placed in a medium. The vibrating source in air		
	causes the shifting of layer of air particles,		
	producing sound waves.		
	*Compression carries energy		
Wavefront	A line or surface joining points of a wave that		
	are in phase.		
Ray	Path taken by the wave and is used to indicated		
	the direction of the wave propagation.		
	Right angles to wavefront.		
Intensity	Rate of energy flow per unit cross-sectional area		
	perpendicular to the direction of wave		
	propagation.		
Principle of	When two or more waves of the same kind exist		
superposition	simultaneously at a point in a medium, the		
	resultant displacement of waves at a given point		
	in time and space is the vector sum of the		
	displacement due to each wave acting		
	independently.		
Unpolarised light	Light in which the plane of vibration of the		
	electric vector is continually changing.		
Polarised light	Electric fields of light oscillates in a single plane.	I =	
	▲	$I_o \cos^2 \theta$	
	θ		
	·····		
Snell's Law	$n_1 _ \sin \theta_2 = v_2$		
	$\frac{1}{n_2} = \frac{1}{\sin \theta_1} = \frac{1}{\nu_1}$		
Critical angle	Angle of incidence in the optically denser		
-	medium for which the angle in the optically less		
	dense medium is 90° to the normal.		
TIR	Takes place when:		

	1. Ray of light travels from optically denser		
	medium to a less dense medium		
	2. Angle <i>i</i> > angle c		
Diffraction	Refers to the phenomenon of bending or		
	spreading of waves when they pass an obstacle,		
	or pass through an aperture.		
	More impt when wavelength is comparable to		
	the size of the aperture or obstacle i.e. $\lambda = b$		
Interference	Waves from two or more coherent sources		
	superpose with one another producing a		
	resultant wave.		
	If slits are sufficiently narrow, bright fringes are		
	equally bright.		
Standing waves	Formed by the superposition of two waves that		
	are:		
	- Same type of wave		
	- Of the same amplitude		
	- Of the same frequency		
	- Travelling in opposite direction		
	Distinct features of standing waves include:		
	- No transmission of energy		
	- All points have different amplitude		
	- All points have the same phase		
	· · · · · · · · · · · · · · · · · · ·		
Topic 5: Electric force	and field		
Electrical conductor	One that allows the flow of charge through it.		
Electrical insulator	Does not allow the flow of charge through it		
Conservation of	The total charge of an isolated system cannot		
electric charge	change		
Coulomb's Law	The electrostatic force between 2 point charges	kQq	N
	is directly proportional to the product of the	$F = \frac{r^2}{r^2}$	
	two charges and inversely proportional to the		
	square of the distance between them		
Electric field strength	(At a point) is defined as the force per unit	_ kQ	NC ⁻¹
	charge experienced by a small positive test	$E = \frac{c}{r^2}$	Ne
	charge	$=\frac{F}{-}$	
<u> </u>		q $W = q \Lambda V$	
difference	positive test charge between 2 points	$v = q \Delta v$	V IC ⁻¹
	Mark dans when a shares sayals to sno		JC -
Electronvolt	work done when a charge equals to one		
	electron charge is taken across a pd of 1V.	Δα	
Electric current	Rate of flow of electric charge.	$I = \frac{\Delta q}{\Delta t}$	А
		Q = ALnq	
		I = Anvq	
Resistance	Ratio of potential difference to the current.	$R = \frac{V}{I}$	
		ρL	
		$\kappa = \frac{1}{A}$	
Ohm's Law	The current through the conductor is directly		
	proportional to the pd across it, provided the		
	temperature (and other physical conditions)		
	remains constant.		

	A resister at constant A filament lamp. A diode.		
Power		$P = VI = I^2R$ $= V^2/R$	W
Emf	Electrical power supplied by the source per unit current delivered by the source.	$V = \varepsilon - Ir$	
Other little stuff	Ideal Ammeter: ZERO resistance Ideal Voltmeter: Infinite resistance		
	$V_{out} = V_{in} \left(\frac{R_2}{R_1 + R_2} \right)$		
	LDR: Increase in light intensity, decrease in resistance of LDR Thermistor: Increase in temperature, decrease in resistance of thermistor Strain gauge: Increase in length, increase in resistance		
	In a magnetic field: F on moving charge always at right angle to velocity \rightarrow circular motion $F_c = F_{magnetic}$ If charge enters field at an angle, the path will be a spiral one.		
Topic 6: Circular Motic	n		
Uniform circular	Motion in a circle of constant radius at constant		
Angular displacement	Angle through which the object moves (when in circular motion).	$\theta = \frac{s}{r}$	rad
Angular speed	Rate of change of angular displacement.	$\omega = \frac{\theta}{t}$ $v = r\omega$	rad s ⁻¹
Centripetal		$a_c = \frac{v^2}{r}$	
Centripetal force	Net force acting on an object experiencing a _c . Provided by friction, gravity, tension, normal force or others.	$F_c = \frac{mv^2}{r}$	N
Newton's Law of Universal Gravitation	Every point particle in the universe attracts every other point particle with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. - Point masses - Equal and opposite forces	$F = \frac{GMm}{r^2}$	N

	- Always attractive		
	- Act between all objects in universe		
Gravitational field	(At a point) is defined as the force per unit mass	GM	N kg ⁻¹
strength	everted on a test mass placed at that point	$g = \frac{1}{r^2}$	11 18
Strength	Assumption for east all mass concentrated at its	$=\frac{F}{}$	
	contro	m	
Accidue to gravity	Varies due to altitude, local geology, and shape		mc ⁻²
Act due to gravity	of the earth (not quite spherical)		1115
Neutral point	Point between two masses which net gravity is		
Neutral point	zero		
Tonic 7: Nuclear and P	article Physics	l	
Nucleons	Protons or neutrons		[
Mass/Neutron no	No. of protons and neutrons		
Atomic/proton no	No. of protons		
Atomic/proton no.	Nuclides of the same element with the same		
isotopes	nuclides of the same element with the same		
	proton number but different heatron number.	latoro etiore	
	Repuisive force arising from the protons with	Interaction	within
(weak interaction)	the atom being all positive in charge. (long-	nucleus	
Characteria	Tanged)		
Strong nuclear	Strong FOA between hadrons that can		
force/strong	overcome coulomb interaction. (Experienced by		
	Time taken for helf the westelde much in a size		
Radioactive half-life	Time taken for half the unstable nuclei in a given		
	sample to decay.		
Unified atomic mass	1/12 the mass of a C-12 atom.		
Mass defect	Difference between the total mass of the		
	constituents of a nucleus and the mass of the		
	nucleus.		
Binding energy	Amount of energy that is released when a		
	nucleus is assembled from its component		
	nucleons.		
Binding energy per	Amount of energy that is released when a		
nucleon	nucleus is assembled from its component		
	nucleons divided by the number of nucleons		
	making up the nucleus.		
Topic 8: Energy produc	ction		[
Primary source of	One that has not been transformed or		
energy	converted before use by the consumer.		
Secondary source	One that results from the transformation of a		
	primary source.		
Renewable sources	Can be replenished in relatively short time.		
	- Sun (solar)		
	- Water (kinetic/potential)		
	- Wind (kinetic)		
Non-renewable	Can be replaced but only over very long		
	geological times.		
	- Nuclear fuels – Uranium-235 (Nuclear)		
	- Fossil fuels (Chemical potential)		-
Specific energy	Indicate the number of joules of energy that can		J kg⁻¹
	be released per unit mass of fuel consumed.		

	Amt of energy liberated		
	$Specific energy = \frac{1}{Mass of fuel consumed}$		
Energy density	Energy liberated per unit volume of fuel		J m⁻³
	consumption.		
	$Energy density = \frac{Amt of energy liberated}{Provide Provide $		
	Volume of fuel consumed		
Nuclear power	Production of energy through a nuclear fission.		
Critical mass	The minimum mass required to sustain a chain		
	reaction. Depends on nature of fuel used and		
	shape of assembly.		
Moderator	Slow neutrons down to allow further reactions		
	to take place.		
Control rods	Movable rods that absorb neutrons readily in		
	the reaction chamber as necessary to control		
	the chain reaction.		
Heat exchangers	Allow nuclear reactions to take place in a sealed		
	environment. The reactions increase the core		
	temperature so that water and steam transfer		
	thermal energy away to turn the turbines.		
Fuel enrichment	Process in which the percentage composition of		
	Uranium-235 in the fuel rods is increased.		
Reprocessing	Involves treating depleted fuel rods to recover		
	uranium and plutonium.		
Wind power	Solar energy \rightarrow KE of wind \rightarrow KE of turbines \rightarrow	KE	J
	Electric energy	$=\frac{1}{2}A\rho v^3$	
Duman ad at a na sa	$CPE of water \rightarrow KE of water \rightarrow KE of water$	<u> </u>	۱۸/
		F	
system	turbines \rightarrow electrical energy	r ma∆h	••
system	turbines \rightarrow electrical energy	$=\frac{mg\Delta h}{t}$	
system Solar power	turbines \rightarrow electrical energy Solar energy \rightarrow electric energy	$=\frac{mg\Delta h}{t}$	
Solar power	turbines \rightarrow electrical energy Solar energy \rightarrow electric energy Solar energy \rightarrow internal energy of the fluid	$=\frac{mg\Delta h}{t}$	
Solar power Solar heating panels	turbines \rightarrow electrical energy Solar energy \rightarrow electric energy Solar energy \rightarrow internal energy of the fluid Solar energy \rightarrow Electrical energy	$=\frac{mg\Delta h}{t}$	
Solar power Solar heating panels Photovoltaic Cell	turbines \rightarrow electrical energy Solar energy \rightarrow electric energy Solar energy \rightarrow internal energy of the fluid Solar energy \rightarrow Electrical energy	$=\frac{mg\Delta h}{t}$	
Solar power Solar heating panels Photovoltaic Cell Thermal energy	 Solar energy → electrical energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp 	$=\frac{mg\Delta h}{t}$	
Solar power Solar heating panels Photovoltaic Cell Thermal energy	 Solar energy → electrical energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to 	$=\frac{mg\Delta h}{t}$	
Solar power Solar heating panels Photovoltaic Cell Thermal energy	 Solar energy → electrical energy Solar energy → electric energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp 	$=\frac{mg\Delta h}{t}$	
Solar power Solar heating panels Photovoltaic Cell Thermal energy	 Solar energy → electrical energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic 	$=\frac{mg\Delta h}{t}$	
Solar power Solar heating panels Photovoltaic Cell Thermal energy Conduction	 Grief of water → KE of water → KE of water turbines → electrical energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic vibrations 	$=\frac{mg\Delta h}{t}$	
Solar power Solar heating panels Photovoltaic Cell Thermal energy Conduction	 Grit of water → kt of water → kt of water turbines → electrical energy Solar energy → electric energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic vibrations. 	$=\frac{mg\Delta h}{t}$	
Solar power Solar heating panels Photovoltaic Cell Thermal energy Conduction Free electron diffusion	 Grief of water → RE of water → RE of water turbines → electrical energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic vibrations. Apply for metals/good conductors only. 	$=\frac{mg\Delta h}{t}$	
Solar power Solar power Solar heating panels Photovoltaic Cell Thermal energy Conduction Free electron diffusion	 Grit of water → kt of water → kt of water turbines → electrical energy Solar energy → electric energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic vibrations. Apply for metals/good conductors only. 	$=\frac{mg\Delta h}{t}$	
Solar power Solar power Solar heating panels Photovoltaic Cell Thermal energy Conduction Free electron diffusion Convection	 Grit of water → KE of water → KE of water turbines → electrical energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic vibrations. Apply for metals/good conductors only. 	$=\frac{mg\Delta h}{t}$	
Solar power Solar power Solar heating panels Photovoltaic Cell Thermal energy Conduction Free electron diffusion Convection Thermal radiation	 Grit of water → RE of water → RE of water turbines → electrical energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic vibrations. Apply for metals/good conductors only. 	$=\frac{mg\Delta h}{t}$	
Solar power Solar power Solar heating panels Photovoltaic Cell Thermal energy Conduction Free electron diffusion Convection Thermal radiation	 Grit of water → RE of water → RE of water turbines → electrical energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic vibrations. Apply for metals/good conductors only. 	$=\frac{mg\Delta h}{t}$	
Solar power Solar power Solar heating panels Photovoltaic Cell Thermal energy Conduction Free electron diffusion Convection Thermal radiation	 Grief of water → RE of water → RE of water turbines → electrical energy Solar energy → internal energy of the fluid Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic vibrations. Apply for metals/good conductors only. 	$=\frac{mg\Delta h}{t}$	
Solar power Solar power Solar heating panels Photovoltaic Cell Thermal energy Conduction Free electron diffusion Convection Thermal radiation Black body	 Grit of water → RE of water → RE of water turbines → electrical energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic vibrations. Apply for metals/good conductors only. Continual emission of IR waves from the surface of bodies, transmitted without the aid of a medium. Perfect emitter (radiator) or absorber of EM 	$=\frac{mg\Delta h}{t}$	
Solar power Solar power Solar heating panels Photovoltaic Cell Thermal energy Conduction Free electron diffusion Convection Thermal radiation Black body	 Grit of water → RE of water → RE of water turbines → electrical energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic vibrations. Apply for metals/good conductors only. Continual emission of IR waves from the surface of bodies, transmitted without the aid of a medium. Perfect emitter (radiator) or absorber of EM radiation of all wavelengths. 	$=\frac{mg\Delta h}{t}$	
Solar power Solar power Solar heating panels Photovoltaic Cell Thermal energy Conduction Free electron diffusion Convection Thermal radiation Black body Wien's displacement	 Grit of water → RE of water → RE of water turbines → electrical energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic vibrations. Apply for metals/good conductors only. Continual emission of IR waves from the surface of bodies, transmitted without the aid of a medium. Perfect emitter (radiator) or absorber of EM radiation of all wavelength at which the radiation interscheid energy is the bodies. 	$\int_{-\infty}^{T} \frac{mg\Delta h}{t}$	2.9x10 ⁻³ m
Solar power Solar power Solar heating panels Photovoltaic Cell Thermal energy Conduction Free electron diffusion Convection Thermal radiation Black body Wien's displacement law	 Grit of water → RE of water → RE of water turbines → electrical energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic vibrations. Apply for metals/good conductors only. Continual emission of IR waves from the surface of bodies, transmitted without the aid of a medium. Perfect emitter (radiator) or absorber of EM radiation of all wavelengths. Relates the wavelength at which the radiation intensity is a maximum to the temp of the black 	$\int_{-\infty}^{T} \frac{mg\Delta h}{t}$	2.9x10 ⁻³ m K
Solar power Solar power Solar heating panels Photovoltaic Cell Thermal energy Conduction Free electron diffusion Convection Thermal radiation Black body Wien's displacement law	 Grit of water → RE of water → RE of water turbines → electrical energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic vibrations. Apply for metals/good conductors only. Continual emission of IR waves from the surface of bodies, transmitted without the aid of a medium. Perfect emitter (radiator) or absorber of EM radiation of all wavelengths. Relates the wavelength at which the radiation intensity is a maximum to the temp of the black body. 	$\int_{-\infty}^{T} \frac{mg\Delta h}{t}$ $\lambda_{max}T = k$	2.9x10 ⁻³ m K
Solar power Solar power Solar heating panels Photovoltaic Cell Thermal energy Conduction Free electron diffusion Convection Thermal radiation Black body Wien's displacement law Stefan-Boltzmann	 Grit of water → RE of water → RE of water turbines → electrical energy Solar energy → internal energy of the fluid Solar energy → Electrical energy Transferred only when there is a difference in temp Always flow from a region of higher temp to a region of lower temp Transfer of thermal energy through atomic vibrations. Apply for metals/good conductors only. Continual emission of IR waves from the surface of bodies, transmitted without the aid of a medium. Perfect emitter (radiator) or absorber of EM radiation of all wavelengths. Relates the wavelength at which the radiation intensity is a maximum to the temp of the black body. Links the total power radiated by a black body 	$F = \frac{mg\Delta h}{t}$ $\lambda_{max}T = k$ $P = \varepsilon\sigma AT^{4}$	2.9x10 ⁻³ m K

Emissivity	Ratio of power radiated by an object to the	Check	
,	power radiated by a black body of same	data	
	dimensions at the same temperature.	booklet	
	Black body = 1		
	Objects that completely reflect radiation		
	without any absorption at all = 0		
Solar constant	Amount of solar radiation across all wavelength		1400 W m ⁻
	that is incident in one second on one square		2
	metre, at the mean distance of the Earth from		
	the Sun on a plane perpendicular to the line		
	joining the centre of the Sun and the centre of		
	the Farth.		
	Loss of solar energy through:		
	- Scattering		
	- Absorption		
	Amount of energy dependent on:		
	- Output of the sun		
	- Weather conditions on earth		
	- Distance between the Sun and the Earth		
	(elliptical orbit)		
Albedo	Fraction of radiation received by a planet that is	Check	0.30 - 0.35
Albedo	reflected straight back into space	data	0.50 0.55
	Varies from 0 to 1	booklet	
		DOOKIEL	
	Varies daily, could be due to:		
	- Season (cloud formations)		
	- Latitude		
	- Surface type (oceans low α snow high		
Greenhouse effect	- Short wavelength radiation is received from		
dicemiouse enect	the sun and causes the surface of the Earth to		
	warm up		
	- The Farth will emit IR radiation (long		
	wavelength radiation) because the Earth is		
	cooler than the Sun		
	- Some of the IR radiation is absorbed by the		
	greenhouse gases in the atmosphere and re-		
	radiated in all directions		
Thermal Equilibrium	$\frac{S(1-\alpha)\pi r^2}{r^2} = e\sigma 4\pi r^2 T^4$		
Thermal Equilibrium	Simplifications:		
	- Treats whole planet as a single body		
	- Ignores any processes that involve feedback		
Enhanced	Increase in the greenhouse effect caused by		
greenhouse effect	human activities		
	Causes of Global Warming		
	- Changes in composition of greenhouse gases		
	in atmosphere.		
	- Changes in the intensity of the radiation		
	emitted by the Sun.		

	- Cyclical changes in the Earth's orbit and		
	volcanic activities.		
	Mechanisms that increase the rate of global		
	warming		
	- Reduction in snow cover, reduce		
	albedo, increase overall rate of heat		
	absorption		
	- Reduces solubility of gases in sae.		
	increase atmospheric concentrations		
	- Increase both evaporation and		
	atmosphere's ability to hold water		
	vapour		
Topic 9: Wave Phenon	hena		
Modulation	Intensities of the maxima of the double slit		
modulation	nattern is enveloped and 'bounded' by the		
	intensity distribution of the single slit nattern		
Resolution	Minimum distance between distinguishable		
Resolution	objects in an image		
Angular resolution	Smallest angular distance between two light		
Angular resolution	sources that can be resolved.		
Rayleigh criterion	Two sources are just resolvable when the first	$A = \frac{1.22\lambda}{\lambda}$	
	minimum of the diffraction pattern of one of the	$b = \frac{b}{b}$	
	sources falls on the central maximum of the		
	diffraction pattern of the other source.		
Resolvance	Ratio of the wavelength λ of the light to the	λ	
(diffraction grating)	smallest difference in wavelength that can be	$K = \frac{1}{\Delta \lambda}$	
	resolved by the diffraction grating $\Delta\lambda$.	= Nm	
Doppler effect	Change in the measured frequency of a wave		
	that results from the relative motion of a source		
	and/or an observer relative to the medium in		
	which the wave is propagated.		
Topic 10: Fields (Electr	ic and Gravitational)		
GPE	Work done by an external force in moving it	E_p	J
-	from infinity to that point.	-GMm	-
	$\Delta GPE = KE \rightarrow v_{esc}$	- r	
Gravitational	Work dong per unit mass by an external fore to	$= mv_g$ W	140-1
notontial	bring a test mass from infinity to that point	$V_g = \frac{1}{m}$	JKB
potentiai	bring a test mass nom minning to that point.	$=-\frac{GM}{GM}$	
Electric notential	Work done per unit charge in moving a small	r W	10-1
Electric potential	positive test charge from infinity to that point	$V_e = \frac{n}{q}$	10
	positive test charge from minity to that point.	$-\frac{kQ}{kQ}$	
		$-\frac{1}{r}$	
		$\Delta E_p = \Delta V q$	
Electric potential		E=V/d	••
Topic 11: Electromag	gnetic induction, power generation and transfor	rmers, capa	citors
Magnetic flux	The product of the magnetic field strength and	φ =	Weber (Wb)
	the area in which the magnetic field passes	Ψ-	
	through.	BA $cos(\theta)$	or
	Magnetic flux density (B) passing through an		
	area (A) normal to the direction of the magnetic		Tesla meter
	tield.		sq (1
1	1	1	,

	 B = magnetic field strength 		
	 A = plane area which field lines pass 		
	through		
	- θ = Angle between direction of B and		
	plane normal		
Magnetic flux	A measure of the magnetic field strength		
density / magnetic	(numerically equal);	φ /A = B	Tesla
field strength	Number of magnetic field lines (passing through		
	an area); flux per unit area		
Magnetic flux <u>linkage</u>	The magnetic flux passing through (linked with)		
	a coil	NΔφ	
	- N = Number of turns of the coil		
Lenz's law	The direction of the induced emf is such as to		
	create a force that opposes the change in		
	magnetic flux that causes it (the induced emf)		
Faraday's law	The magnitude of the induced emf is directly		
	proportional to the rate of change of magnetic		
	flux linkage		
Induced EMF	The emf produced due to a change in magnetic	٤ (for	Volts (V)
	flux over time, due to:	coil) =	
	 Wire or coil cutting through a magnetic 	$-(N)\frac{\Delta\phi}{4\hbar}$	
	field	Δι	
	 A change in magnetic field strength as a 	E(for rod)	
	conductor passes through a field	$\underline{\Delta \phi}$	
	- Change in coil size or orientation	$-\Delta t$	
	where	BlΔx	
	- B = magnetic field strength	$=\frac{\Delta t}{\Delta t}$	
	- x = distance travelled by rod		
	- I = length of wire/rod passing through	= Blv	
	TIEIO		
	- V = Velocity in which rod is travelling		
Slip rings	Used in an AC generator, ensures a closed circuit		
	is maintained whereby the coll is still connected		
	with the rest of the circuit despite rotation		
Root-Mean square	The RMS value of any alternating electrical	V _{rms} =	
(RMS)	quantity is equal to the constant DC value that	Umax	
	would give the same average power output /	VIIIux	
	The Rivis value current/voltage =	$\sqrt{2}$	
	current/voltage in a direct circuit required to		
Max/ Average AC			
Nidx/ Average AC	$\frac{1}{2} v_{max} m_{ax} - Avg AC power$		
power	V _{max1max} – Max AC power		
Transformers	An apparatus that increases or decreases the		
	voltage of an alternating current. Used in power		
	transmission, usually a step-up transformer is		
	used to increase voltage and reduce current,		
	thus reducing energy loss through current		
	transmission in the wires. The power is then put		
	through a step-down transformer to convert the		
	voltage to a more usable value.		

	- Must use AC to create a changing		
	magnetic flux		
Transformer rule	$\mathcal{E}(pri) = V(pri) = I(sec)$		
	$\frac{1}{E(sec)} = \frac{1}{V(sec)} = \frac{1}{I(pri)}$		
Lamina / laminated	Layers of insulating material (lamina) placed		
core	between sheets of iron in the core, to direct the		
	flow of magnetic flux. Reduces eddy currents		
	flowing inside the core.		
Eddy currents	Currents that flow within the iron core of a		
	transformer, leads to energy loss and a loss of		
	efficiency of the transformer.		
Rectification	The process of converting an AC supply into a		
	DC supply. Usually done so with diode bridges,		
	can be half-wave or full-wave.		
Capacitor	The arrangement in which two parallel plates		
	are separated by an insulator (air, vacuum,		
	material). Has the ability to store charge and		
	thus energy.		
Capacitance (C)	The ratio between the charge stored in a	C = QV	
	capacitor(in one plate) and the potential	Δ	Coulomb/Vol
	difference between the two charged plates.	$C = E \frac{A}{d}$	τ;
		a	Farad (F)
	The factors affecting capacitance are also		1 81 80 (1)
	- Permittivity (E)		
	(\mathcal{E}_0 is the permittivity of vacuum)		
	- Overlap Area (A)		
	- Distance between parallel plates (d)		
Energy stored in a	It is the area under the graph of charge against		
capacitor	potential difference between the capacitor.		Joules (J)
	Therefore it is = $\frac{1}{2}QV = \frac{1}{2}CV^2$		
Time constant (of a	The time required for 0.37 (1/e = approx 0.37)		
capacitor when it	of the capacitor's initial charge/voltage to be	τ = RC	S ⁻¹
discharges)	remaining in the capacitor.		
	Where:		
	 R = total resistance in the circuit that it 		
	is discharging to		
	 C = capacitance of capacitor 		
Topic 12: Quantum ph	ysics	1	
Photoelectric Effect	Emission of electrons from the surface of a		
	metal when EM radiation of sufficiently high		
	frequency is shone on it.		
	1. Existence of threshold frequency		
	2. Emission of photoelectrons is almost		
	Instantaneous		
	5. IVIAX NE OF EJECTED ELECTRONS IS		
	hut dependent of the intensity of the light		
	but dependent on the frequency of the		
	L = 111	1	

	l = nhf		
	4. Rate at which electrons were ejected (so		
	photocurrent produced) proportional to		
	intensity (brightness of light)		
Work function	Minimum amount of energy required for an	hf	
	electron to escape from the surface of a metal.	$= \emptyset + KE$	
	Note: Rest of energy is converted to KE for	aV - KE	
	electron to make its way to the surface and	eV = KL = $hf - \emptyset$	
	escape from the metal.		
	WD by stopping potential = Loss in KE of		
	electrons		
De Broglie	All moving particles have a "matter wave"	h	
hypothesis	associated with them.	$p = \frac{1}{\lambda}$	
,,	KE = EPE		
	½ mv² = eV → v = (2eV/m) ^{1/2}		
	h h		
	$\lambda = \frac{1}{\sqrt{2eVm}}$		
	Experiment:		
	Diffraction (electron 'wave' wavelength ~ gap)		
	Atomic spacing in crystal atoms (e.g. powdered		
	graphite)		
	Electrons accelerated towards thin layer of		
	graphite		
Wave function	Square of the amplitude of the wave function		
	gives the probability of finding the electron at a		
	particular point.		
Beta decay	3 pdts \rightarrow infinite number of directions and		
	velocities the beta and neutrino can take $ ightarrow$ KE		
	can take on any value \rightarrow continuous spectrum		
Decay constant	Probability of decay of a nucleus per unit time.		
Activity	Number of nuclei decaying per unit time.		
Half life	Time taken for half the nuclei in a given sample		
	to decay.		

Nuclear Radius:

- Rutherford scattering (determined by distance of closest approach, KE = (kQq)/r, where r is the radius of the nucleus)
- Electron diffraction (determined diameter of obstacle i.e. diameter of nucleus; make use of wave property, d sinx = lambda)

Nuclear energy levels:

- Alpha decay
- Gamma ray spectra

Quantised energy levels/atomic energy levels (outside of nucleus):

- Emission spectra
- Absorption spectra
- Note: both involve electrons