MATHEMATICS OMEGA SHEET

Anonymous | More free notes at tick.ninja

Rules of Indices

1. (a) $a^m \times a^n = a^{m+n}$ (b) $a^m \div a^n = a^{m-n}$ (c) $(a^m)^n = a^{mn}$ (d) $a^0 = 1$, provided $a \neq 0$ (e) $a^{-n} = \frac{1}{a^n}$ (f) $a^{\frac{1}{n}} = \sqrt[n]{a}$ (g) $a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m$ (h) $(a \times b)^n = a^n \times b^n$ (i) $(\frac{a}{b})^n = \frac{a^n}{b^n}$, provided $b \neq 0$

Definition of a Surd

2. A surd is an irrational root of a real number, e.g. $\sqrt{2}$, $\sqrt{3}$, etc..

Operations on Surds

3. (a) $\sqrt{a} \times \sqrt{a} = a$ (b) $\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ (c) $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ (d) $m\sqrt{a} + n\sqrt{a} = (m+n)\sqrt{a}$ (e) $m\sqrt{a} - n\sqrt{a} = (m-n)\sqrt{a}$

Conjugate Surds

- 4. $a\sqrt{m} + b\sqrt{n}$ and $a\sqrt{m} b\sqrt{n}$ are conjugate surds.
- 5. $(a\sqrt{m} + b\sqrt{n})(a\sqrt{m} b\sqrt{n}) = a^2m b^2n$, which is a rational number.
- 6. The product of a pair of conjugate surds is always a rational number.

Rationalising the Denominator

7. To rationalise the denominator of a surd is to make the denominator a rational number.

(a)
$$\frac{\sqrt{b}}{\sqrt{a}} = \frac{\sqrt{b}}{\sqrt{a}} \times \frac{\sqrt{a}}{\sqrt{a}}$$
$$= \frac{\sqrt{ab}}{a}$$
(b)
$$\frac{1}{\sqrt{a} + \sqrt{b}} = \frac{1}{\sqrt{a} + \sqrt{b}} \times \frac{\sqrt{a} - \sqrt{b}}{\sqrt{a} - \sqrt{b}}$$
$$= \frac{\sqrt{a} - \sqrt{b}}{a - b}$$

Logarithms

8. If a > 0 and $a \neq 1$,

- 9. For $\log_a y$ to exist, *a* and *y* must be positive.
- **10.** Common logarithm: $\log_{10} x$ or $\lg x$
- **11.** Natural logarithm: $\log_{e} x$ or $\ln x$

Laws of Logarithms

- **12.** Product Law: $\log_a xy = \log_a x + \log_a y$
- **13.** Quotient Law: $\log_a\left(\frac{x}{y}\right) = \log_a x \log_a y$
- 14. Power Law: $\log_a x^r = r \log_a x$

Change of Base Formula

$$15. \quad \log_a x = \frac{\log_b x}{\log_b a}$$

Other Properties of Logarithms

16. (a)
$$\log_a a = 1$$

(b) $\log_a 1 = 0$

Graphs of Exponential Functions

17. Graphs of $y = a^x$

The graph of $y = a^x$ must pass through the point (0, 1) because $a^0 = 1$.

Graphs of Logarithmic Functions

18. Graphs of $y = \log_a x$

Solving Exponential Equations

- **19.** Given $a^x = b$,
 - If *b* can be expressed as a power of *a*, e.g. $b = a^y$, then $a^x = a^y \therefore x = y$.
 - If *b* cannot be expressed as a power of *a*,
 - take common logarithms on both sides, i.e. $x \lg a = \lg b$ $\therefore x = \frac{\lg b}{\lg a}$, or
 - take natural logarithms on both sides if a = e, i.e. $x \ln e = \ln b$ $\therefore x = \ln b$

20. Given $p(a^{2x}) + q(a^x) + r = 0$,

Step 1: Substitute $u = a^x$ to get a quadratic equation $pu^2 + qu + r = 0$. Step 2: Solve for u and deduce the value(s) of x.

Solving Logarithmic Equations

- **21.** To solve logarithmic equations,
 - Step 1: Change the bases of the logarithmic functions to the same base. We usually choose the smaller base as the final base.
 - Step 2: Use one of the following methods to solve the equations.
 - (a) If $\log_a x = \log_a y$, then x = y and vice versa.
 - (**b**) If $\log_a x = b$, then $x = a^b$.
 - (c) Use the laws of logarithms to combine the terms into the forms described in method (a) or (b).

Distance between 2 Points

1. Length of
$$AB = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Midpoint of 2 Points

2. Midpoint of
$$AB = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Gradient of Line and Collinear Points

3. Gradient of
$$AB$$
, $m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_1 - x_2} = \tan \theta$

5. If $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are collinear, then gradient of AB = gradient of BC = gradient of AC and area of $\triangle ABC = 0$.

Parallel and Perpendicular Lines

"Finding normal to the tangent" questions

- 6. If two lines l_1 and l_2 have gradients m_1 and m_2 respectively,
 - l_1 is parallel to l_2 if $m_1 = m_2$.
 - l_1 is perpendicular to l_2 if $m_1m_2 = -1$.

Equation of a Straight Line

Anonymous | More free notes at tick.ninja

- 7. Gradient form: y = mx + c, where *m* is the gradient and *c* is the *y*-intercept
- 8. Intercept form: $\frac{x}{a} + \frac{y}{b} = 1$, where a and b are the intercepts the line makes on the x-axis and y-axis respectively
- 9. General form: Ax + By + C = 0, where A, B and C are constants

m₂ = -1/m₁

Area of Polygons

10. If $A(x_1, y_1)$, $B(x_2, y_2)$, $C(x_3, y_3)$, ..., and $N(x_n, y_n)$ form a polygon, then Area of polygon = $\frac{1}{2} \begin{vmatrix} x_1 & x_2 & x_3 \dots x_n & x_1 \\ y_1 & y_2 & y_3 & y_n & y_1 \end{vmatrix}$ = $\frac{1}{2} (x_1 y_2 + x_2 y_3 + \dots + x_n y_1 - x_2 y_1 - x_3 y_2 - \dots - x_1 y_n)$

- 11. If $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ form a triangle *ABC*, then Area of $\Delta ABC = \frac{1}{2} \begin{vmatrix} x_1 & x_2 & x_3 & x_1 \\ y_1 & y_2 & y_3 & y_1 \end{vmatrix}$
- 12. Vertices must be taken in a cyclic and anticlockwise order.

Ratio Theorem

1. The Linear Law

If the variables x and y are related by the equation y = mx + c, then a graph of the values of y plotted against their respective values of x is a straight line graph.

The straight line has a gradient m and it cuts the "vertical" axis at the point (0, c).

- 2. Linear Law is used to reduce non-linear functions to the linear form y = mx + c.
- 3. To reduce confusion, we sometimes denote the horizontal axis as X and the vertical axis as Y. i.e. Y = mX + c.

]	Functions	Plotted along horizontal axis	Plotted along vertical axis
$1. y = ax^n + b$		x^n	у
$2. y = \frac{a}{x^n} + b$		$\frac{1}{x^n}$	у
$3. \frac{1}{y} = ax^n + b$		x^{n}	$\frac{1}{y}$
$4. y = a \sqrt[n]{x} + b$		$\sqrt[n]{x}$	у
$5. y = a\sqrt{x} + \frac{b}{\sqrt{x}}$	or $y\sqrt{x} = ax + b$	x	$y\sqrt{x}$
$6. xy = \frac{a}{x} + bx$	or $x^2y = bx^2 + a$	x ²	x^2y
7. x = bxy + ay	or $\frac{x}{y} = bx + a$	x	$\frac{x}{y}$
$8. \frac{a}{x} + \frac{b}{y} = n$	or $\frac{1}{y} = \left(-\frac{a}{b}\right)\frac{1}{x} + \frac{n}{b}$	$\frac{1}{x}$	$\frac{1}{y}$
or $ay + bx = nxy$	or $y = \frac{a}{n} \left(\frac{y}{x} \right) + \frac{b}{n}$	$\frac{y}{x}$	У
$9. y = ax^2 + bx + n$	or $\frac{y-n}{x} = ax + b$	x	$\frac{y-n}{x}$
10. $y = a^2x^2 + 2abx + b^2$	or $\sqrt{y} = ax + b$	x	\sqrt{y}
	or $\sqrt{y} = -ax - b$	<i>x</i>	\sqrt{y}
11. $y = \frac{a}{x-b}$	or $\frac{1}{y} = \frac{1}{a}x - \frac{b}{a}$	x	$\frac{1}{y}$
12. $y = ax^b$	or $\lg y = b \lg x + \lg a$	lg x	lg y
	or $\ln y = b \ln x + \ln a$	ln x	ln y
13. $y = n - ax^b$	or $\lg (n - y) = b \lg x + \lg a$	lg x	lg(n-y)
14. $y = ab^x$	or $\lg y = x \lg b + \lg a$	x	lg y
$15. y^n = \frac{b^x}{a}$	or $\lg y = x\left(\frac{\lg b}{n}\right) - \frac{\lg a}{n}$	x	lg y
16. $ya^x = b + n$	or $\lg y = (-\lg a)x + \lg(b + n)$	x	lg y
17. $y^b = 10^{2x+a}$	or $\lg y = \frac{2}{b}x + \frac{a}{b}$	x	lg y
18. $y^b = e^{2x + a}$	or $\ln y = \frac{2}{b}x + \frac{a}{b}$	x	ln y

4. Some of the common functions and how to linearise them are shown in the table below.

Equation of a Circle

1. Standard form

 $(x-a)^2 + (y-b)^2 = r^2$

where (a, b) is the centre and r is the radius

2. General form

 $x^2 + y^2 + 2gx + 2fy + c = 0$ where (-g, -f) is the centre and $\sqrt{g^2 + f^2 - c}$ is the radius

Negative-or-positive Basic Identities

Basic Trigonometric Ratios

$\sin \theta = \frac{y}{h}$	$\csc \theta = \frac{1}{\sin \theta} = \frac{h}{y}$
$\cos \theta = \frac{x}{h}$	$\sec \theta = \frac{1}{\cos \theta} = \frac{h}{x}$
$\tan \theta = \frac{y}{x}$	$\cot \theta = \frac{1}{\tan \theta} = \frac{x}{y}$

Complementary Angles

2.

$\sin\left(90^\circ - \theta\right) = \cos\theta$	$\cos\left(90^\circ - \theta\right) = \sin\theta$
$\tan\left(90^\circ - \theta\right) = \cot\theta$	$\cot (90^{\circ} - \theta) = \tan \theta$
$\sec (90^\circ - \theta) = \csc \theta$	$\operatorname{cosec} (90^\circ - \theta) = \sec \theta$

Basic Angle (or Reference Angle)

3. The basic angle, α , is the acute angle between a rotating radius about the origin and the x-axis.

Signs of Trigonometric Ratios in the Four Quadrants

4.

Trigonometric Ratios of Special Angles 5.

θ	0°	$30^\circ = \frac{\pi}{6}$	$45^\circ = \frac{\pi}{4}$	$60^\circ = \frac{\pi}{3}$	$90^\circ = \frac{\pi}{2}$	$180^\circ = \pi$	$270^\circ = \frac{3\pi}{2}$	$360^\circ = 2\pi$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0	1
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	Undefined	0	Undefined	0

Graphs of Trigonometric Functions

- To sketch the graphs of 9.
 - $y = a \sin bx + c$ or $y = a \cos bx + c$ or $y = a \tan bx + c$:
 - Step 1: Draw the graph of $y = a \sin bx$ or $y = a \cos bx$ or $y = a \tan bx$.
 - If c > 0, shift the graph up by c units. If c < 0, shift the graph down by |c| units. Step 2:

Fundamental Identities

Curve-sketching General Tips

- 1. Label: range, amplitude, period
- 2. Label x-axis, y-axis, origin

Compound Angle Formulae

- 1. $\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$
- 2. $\cos (A \pm B) = \cos A \cos B \mp \sin A \sin B$

3. $\tan (A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$

Double Angle Formulae

$$4. \quad \sin 2A = 2 \sin A \cos A$$

5.
$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$6. \quad \tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Half Angle Formula

Replace A with $\frac{A}{2}$ in the Double Angle Formulae. 7. $\sin A = 2 \sin \frac{A}{2} \cos \frac{A}{2}$ 8. $\cos A = \cos^2 \frac{A}{2} - \sin^2 \frac{A}{2}$ $= 2 \cos^2 \frac{A}{2} - 1$ $= 1 - 2 \sin^2 \frac{A}{2}$ 9. $\tan A = \frac{2 \tan \frac{A}{2}}{1 - \tan^2 \frac{A}{2}}$

Factor Formulae

10.
$$\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$$

11. $\sin A - \sin B = 2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}$
12. $\cos A + \cos B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$
13. $\cos A - \cos B = -2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$
14. $\sin A - \sin B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$
15. $\cos A - \cos B = -2 \sin \frac{A+B}{2} \sin \frac{A-B}{2}$
16. $\sin(A+B) + \sin(A-B) = 2 \sin A \cos B$
17. $\cos(A+B) + \cos(A-B) = 2 \cos A \cos B$
18. $\cos(A+B) + \cos(A-B) = 2 \cos A \cos B$
19. $\cos(A+B) - \cos(A-B) = -2 \sin A \sin B$
19. $\cos(A+B) - \cos(A-B) = -2 \sin A \sin B$

В

В

R-Formulae

14. $a \sin \theta + b \cos \theta = R \sin (\theta + \alpha)$ **15.** $a \sin \theta - b \cos \theta = R \sin (\theta - \alpha)$ where $R = \sqrt{a^2 + b^2}$ and $\tan \alpha = \frac{b}{a}$ **16.** $a\cos\theta + b\sin\theta = R\cos(\theta - \alpha)$ 17. $a \cos \theta - b \sin \theta = R \cos (\theta + \alpha)$

18. For the expression $a \sin \theta \pm b \cos \theta$ or $a \cos \theta \pm b \sin \theta$,

- Maximum value = R
- Minimum value = -R, • when $\tan \alpha = \frac{b}{a}$

Formulae

1.
$$\frac{d}{dx}(x^n) = nx^{n-1}$$

2.
$$\frac{d}{dx}(ax^n) = anx^{n-1}$$

$$3. \quad \frac{\mathrm{d}}{\mathrm{d}x}(k) = 0$$

Addition/Subtraction Rules

4. If
$$y = u(x) \pm v(x)$$
,

$$\frac{dy}{dx} = \frac{d}{dx} [u(x)] \pm \frac{d}{dx} [v(x)]$$

Chain Rule

5. If y is a function of u, then

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$$

$$6. \quad \frac{\mathrm{d}}{\mathrm{d}x} [(ax + b)^n] = an(ax + b)^{n-1}$$

7. In general,
$$\frac{\mathrm{d}}{\mathrm{d}x} [f(x)]^n = n [f(x)]^{n-1} \cdot f'(x)$$

Product Rule

8. If y = uv, where u and v are functions of x, then

$$\frac{\mathrm{d}y}{\mathrm{d}x} = u\frac{\mathrm{d}v}{\mathrm{d}x} + v\frac{\mathrm{d}u}{\mathrm{d}x}$$

Quotient Rule

9. If
$$y = \frac{u}{v}$$
, where u and v functions of x, then

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Increasing/ Decreasing Function

10. If y is an increasing function (y increases as x increases), the gradient is positive, i.e. $\frac{dy}{dx} > 0$. 11. If y is a decreasing function (y decreases as x increases), the gradient is negative, i.e. $\frac{dy}{dx} < 0$.

Equation of Tangent and Normal to a Curve

12. Equation of a straight line: $y - y_1 = m(x - x_1)$

- 13. To find the equation of a tangent, we need: Gradient of tangent, $m = \frac{dy}{dx}$ Coordinates of a point that lies on the tangent, (x_1, y_1)
- 14. To find the equation of a normal, we need:

Gradient of tangent = $\frac{dy}{dx}$ Gradient of normal = $-1 \div \frac{dy}{dx}$

Coordinates of a point that lies on the normal, (x_1, y_1)

Higher Derivatives

Function in x	у	f(x)
First derivative	$\frac{\mathrm{d}y}{\mathrm{d}x}$	f'(x)
Second derivative	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$	f''(x)
Third derivative	$\frac{\mathrm{d}^3 y}{\mathrm{d}x^3}$	f‴(x

Connected Rates of Change

1. If $\frac{dx}{dt}$ is the rate of change of x with respect to time t and y = f(x), then the rate of change of y with respect

to t is given by
$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$
.

- 2. A positive rate of change is an increase in the magnitude of the quantity involved as the time increases.
- 3. A negative rate of change is a decrease in the magnitude of the quantity involved as the time increases.

Stationary Points

- 4. If a point (x_0, y_0) is a stationary point of the curve y = f(x), then $\frac{dy}{dx} = 0$ when $x = x_0$, i.e. the gradient of the tangent at $x = x_0$ is zero.
- 5. A stationary point can be a maximum point, a minimum point or a point of inflexion.

Determining the Nature of the Stationary Points

6. First Derivative Test: Use $\frac{dy}{dx}$.

Maximum	noint
1 unannun	point

	1		_
	x	x_0	<i>x</i> ⁺
$\frac{\mathrm{d}y}{\mathrm{d}x}$	>0	0	<0
slope	1	_	1
stationary point	/	\frown	\backslash

	x	<i>x</i> ₀	<i>x</i> ⁺
$\frac{\mathrm{d}y}{\mathrm{d}x}$	>0	0	>0
slope	1	_	/
stationary point	(

Minimum point

	x	x_0	<i>x</i> ⁺
$\frac{\mathrm{d}y}{\mathrm{d}x}$	<0	0	>0
slope	1	-	1
stationary point	/		/

	x	x_0	<i>x</i> ⁺
$\frac{\mathrm{d}y}{\mathrm{d}x}$	<0	0	<0
slope	1	-	1
stationary point	>		$\overline{}$

Point of inflexion

- 7. Second Derivative Test: Use $\frac{d^2y}{dx^2}$.
 - If $\frac{d^2 y}{dx^2} < 0$, the stationary point is a maximum point.
 - If $\frac{d^2y}{dx^2} > 0$, the stationary point is a minimum point.
 - If $\frac{d^2y}{dx^2} = 0$, the stationary point can be a maximum point, a minimum point or a point of inflexion. Use the

First Derivative Test to determine the nature.

Problems on Maxima and Minima

- 8. Step 1: Find a relationship between the quantity to be maximised or minimised and the variable(s) involved.Step 2: If there is more than one variable involved, use substitution to reduce it to one independent variable only.
 - Step 3: Find the first derivative of the expression obtained above.
 - Step 4: Equate the first derivative to zero to obtain the value(s) of the variable.
 - Step 5: Check the nature of the stationary point.
 - Step 6: Find the required maximum or minimum value of the quantity.

1. Ensure that your calculator is in radian mode.

Formulae

2.
$$\frac{d}{dx}(\sin x) = \cos x$$

 $\frac{d}{dx}(\tan x) = \sec^2 x$
 $\frac{d}{dx}(\sec x) = \sec x \tan x$
 $\frac{d}{dx}(\cos x) = -\sin x$
 $\frac{d}{dx}(\cot x) = -\csc^2 x$
 $\frac{d}{dx}(\csc x) = -\csc x \cot x$

3. $\frac{d}{dx}[\sin(Ax+B)] = A\cos(Ax+B)$ $\frac{d}{dx}[\cos(Ax+B)] = -A\sin(Ax+B)$ $\frac{d}{dx}[\tan(Ax+B)] = A\sec^2(Ax+B)$

4.
$$\frac{d}{dx} \left[\sin^{n} x \right] = n \sin^{n-1} x \cos x$$
$$\frac{d}{dx} \left[\cos^{n} x \right] = -n \cos^{n-1} x \sin x$$
$$\frac{d}{dx} \left[\tan^{n} x \right] = n \tan^{n-1} x \sec^{2} x$$

5.
$$\frac{d}{dx} [\sin^n (Ax+B)] = An \sin^{n-1} (Ax+B) \cos (Ax+B)$$
$$\frac{d}{dx} [\cos^n (Ax+B)] = -An \cos^{n-1} (Ax+B) \sin (Ax+B)$$
$$\frac{d}{dx} [\tan^n (Ax+B)] = An \tan^{n-1} (Ax+B) \sec^2 (Ax+B)$$

In general,

6.
$$\frac{d}{dx} [\sin^n f(x)] = n \sin^{n-1} f(x) \times \frac{d}{dx} [\sin f(x)]$$
$$\frac{d}{dx} [\cos^n f(x)] = n \cos^{n-1} f(x) \times \frac{d}{dx} [\cos f(x)]$$
$$\frac{d}{dx} [\tan^n f(x)] = n \tan^{n-1} f(x) \times \frac{d}{dx} [\tan f(x)]$$

Differentiation of Exponential Functions

1. $\frac{d}{dx}(e^x) = e^x$ 3. In general, $\frac{d}{dx}(e^{f(x)}) = f'(x)e^{f(x)}$, where $f'(x) = \frac{d}{dx}f(x)$.

Graphs of Exponential Functions

Differentiation of Logarithmic Functions

- 5. $\frac{d}{dx}(\ln x) = \frac{1}{x}$ 6. $\frac{d}{dx}[\ln(ax + b)] = \frac{a}{ax + b}$
- 7. In general, $\frac{d}{dx} [\ln f(x)] = \frac{f'(x)}{f(x)}$, where $f'(x) = \frac{d}{dx} f(x)$
- 8. As far as possible, make use of the laws of logarithms to simplify logarithmic expressions before finding derivatives.

Graphs of Logarithmic Functions

9. The graphs of $y = a^x$ and $y = \log_a x$ are reflections of each other in the line y = x.

Integration

1. If y = f(x), then $\int y \, dx = \int f(x) \, dx$.

2. If
$$\frac{dy}{dx} = g(x)$$
, then $\int g(x) dx = y + c$.

Formulae and Rules

3.
$$\int ax^n dx = \frac{ax^{n+1}}{n+1} + c$$
, where $n \neq -1$
4. $\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + c$, where $n \neq -1$

5.
$$\int f(x) \pm g(x) \, dx = \int f(x) \, dx \pm \int g(x) \, dx$$

Integration of Trigonometric Functions

$$6. \qquad \int \sin x \, \mathrm{d}x = -\cos x + c$$

7.
$$\int \cos x \, \mathrm{d}x = \sin x + c$$

8.
$$\int \sec^2 x \, dx = \tan x + c$$

9.
$$\int \sin (Ax + B) dx = -\frac{1}{A} \cos (Ax + B) + c$$

10.
$$\int \cos (Ax + B) \, dx = \frac{1}{A} \sin (Ax + B) + c$$

11.
$$\int \sec^2 (Ax + B) \, dx = \frac{1}{A} \tan (Ax + B) + c$$

12. Methods of Integrating Trigonometric Functions:

- use trigonometric identities e.g. $1 + \tan^2 x = \sec^2 x$
- use double angle formulae e.g. $\cos 2x = 2 \cos^2 x 1$ or $\cos 2x = 1 2 \sin^2 x$

.

• use factor formulae

Integration of $\frac{1}{ax + b}$ 13. $\int \frac{1}{x} dx = \ln |x| + c$ 14. $\int \frac{1}{ax + b} dx = \frac{1}{a} \ln |ax + b| + c$

$$14. \quad \int \frac{1}{ax+b} \, \mathrm{d}x = \frac{1}{a} \ln |ax+b| \, \mathrm{d}x = \frac{1}{a} \ln |ax+b|$$

15. In general, $\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + c$

Integration of e^x

16.
$$\int e^{x} dx = e^{x} + c$$

17. $\int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + c$

Definite Integrals

18.
$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

$$19. \quad \int_{a}^{a} f(x) dx = 0$$

$$20. \quad \int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

21.
$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$

22.
$$\int_{a}^{c} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx$$

23.
$$\int_{a}^{b} f(x) \pm g(x) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

Integration Using Partial Fractions

Step 1: Check that the fraction is improper

P(x)/Q(x) is a proper algebraic fraction if the degree of P(X) is smaller than the degree of Q(x)

P(x)/Q(x) is a proper algebraic fraction if the degree of P(X) is smaller than the degree of Q(x)

Step 2

Factorize the denominator

Step 3: Examine the factors of the denominator to decide on the general form of the partial fraction

No.	Type of factor	General form	General form of partial	
			fraction	
1	Linear factors	ax + b	A B	
			$\frac{1}{ax+b} + \frac{1}{cx+d}$	
2	Irreducible quadratic	$ax^2 + bx + c$	Ax + B	
	factors		$ax^2 + bx + c$	
3	Repeated linear factors	$(ax + b)^2$	A B	
			$\overline{ax+b}^+$ $\overline{(ax+b)^2}$	

Area under a Curve

For a region above the x-axis: 1.

Area bounded by the curve y = f(x), the lines x = a and x = b and the x-axis is $\int_{a}^{b} f(x) dx$

For a region below the x-axis: 2.

Area bounded by the curve y = f(x), the lines x = a and x = b and the x-axis is $\left| \int_{a}^{b} f(x) dx \right|$

For an area enclosed above and below the x-axis: 3. Area bounded by the curve y = f(x) and the x-axis as shown below is $\int_{a}^{b} f(x) dx + \left| \int_{b}^{c} f(x) dx \right|$

Area bounded by the y-axis

4. For a region on the right side of the y-axis: Area bounded by the curve x = f(y), the lines y = a and y = b and the y-axis is $\int_{a}^{b} f(y) dy$

5. For a region on the left side of the y-axis: Area bounded by the curve x = f(y), the lines y = a and y = b and the y-axis is $\left| \int_{a}^{b} f(y) dy \right|$

Relationship between Displacement, Velocity and Acceleration

Common Terms used in Kinematics

2.	Initial	t = 0
	At rest	v = 0
	Stationary	v = 0
	Particle is at the fixed point	s = 0
	Maximum/minimum displacement	v = 0
	Maximum/minimum velocity	a = 0

3. Average speed = $\frac{\text{Total distance travelled}}{\text{Total time taken}}$

- 4. To find the distance travelled in the first *n* seconds:
 - Step 1: Let v = 0 to find t.
 - Step 2: Find *s* for each of the values of *t* found in step 1.
 - Step 3: Find s for t = 0 and t = n.
 - Step 4: Draw the path of the particle on a displacement-time graph.

Area and Volume

Shape	Area	Volume
Cylinder	2πr ² + 2πrh	πr²h
Cone h S h	πr ²⁺ πrS	$\frac{1}{3}\pi r^2h$
Sphere	4πr ²	$\frac{4}{3}$ mr ³

Differentiation by first principles

- 1. Let (x,y) and $(x+\delta x, y+\delta y)$ be 2 points on a curve
- 2. y = f(x), $\delta y = f(\delta x)$
- 3. Equation 2 minus equation 1 to find δy
- 4. Divide $\delta y b y \delta x$ to find $\delta y / \delta x$
- 5. Set lim to 0

$$\lim_{\delta x \to 0} \left(\frac{\delta y}{\delta x} \right)$$

Miscellaneous

1 radian = $\frac{180}{\pi}$

 π radian = 180

 2π radian = 360

Area of sector = $\frac{1}{2}\theta r^2$ (θ is in radians)

Arc length, $L = \theta r (\theta \text{ is in radians})$

Area of segment = $\frac{1}{2}(\theta - \sin \theta)r^2$ (θ is in radians)

