Proteins | | Amino Acids | Amino acid have a α-carbon atom, covalently bonded to one carboxyl group, one amino group, one H atom and one variable R group . The R group can be a polar , non-polar , acidic or basic side group. | | |---------|---------------|---|--| | | | Amino acids exist as zwitterions in solution, with a positive –NH ₃ + group and a negative –COO- group. They are able to act as buffers to prevent sudden changes in pH , accepting or donating H+ to act as a base or acid respectively. Hence, they are amphoteric . | | | ins | Peptide Bonds | Amino acids are joined by a peptide bond via a condensation reaction with the removal of one water molecule with for every peptide bond formed to form polypeptides. The -OH group from the carboxyl group and the H atom from amino group contribute to the formation of water molecule. | | | Protein | Structure | The nucleotide sequence in DNA determines the amino acid sequence in the polypeptide which determines the types and location of R groups will determine the types and location of R group interactions formed to maintain the tertiary and quaternary structure of the protein. This determines the specific 3D conformation and hence functions of the protein. | | | | Denaturation | Denaturation is the loss of the 3D conformation of the protein molecule which causes the protein to lose its function . This can be changed by heat, pH, inorganic ions, organic solvents or mechanical forces. | | | | Biuret Test | Describe how a test for proteins can be carried out. | | | | | Add 2cm ³ of 5% NaOH solution to an equal volume of sample in a test tube. Shake the mixture well. Add two drops of 1% CuSO ₄ solution, shaking well after each drop. If proteins are present, a purple color develops. | | | Outline the structure of a protein molecule. | | | | | |---|-------------------------------|--|---|--| | Definition | | Examples | | | | Primary structure refers to the specific number and sequence of amino acids in a single polypeptide chain. It is maintained by peptide bonds . | - | | | | | | Comparison | α-helix | β-pleated sheet | | | | Shape | Single polypeptide wound into a coil. | Flat sheet. | | | Secondary structure refers to the regular coiling or pleating of the polypeptide. It is held together by hydrogen bonds between -CO and -NH groups of | Location of
Hydrogen Bonds | Turns linked by hydrogen bonds between the -CO group of one amino acid residue and the -NH group of another amino acid residue four amino acids away within a single polypeptide backbone. | Formed between the -CO group of one amino acid residue and the -NH group of another amino acid residue on adjacent regions of a single polypeptide chain. | | | the polypeptide backbone . | Direction | Coiled in a single direction . | Amino acids in one segment can run parallel or anti-parallel relative to another segment. | | | | Others | 3.6 amino acid residues per turn of the helix. | - | | | Outline the structure of a protein molecule. | | | | | | | |--|-----------------------------|--|--|--|--|--| | Definition | | Examples | | | | | | Tertiary structure refers to the further extensive | Interaction | Formed Between | | | | | | folding and bending of a single polypeptide chain giving rise to its specific 3D conformation . It is held in place by hydrophobic interactions , ionic bonds , | Hydrophobic
Interactions | Non-polar R groups cluster at the core of the protein where they are shielded from water in hydrophobic interactions. | | | | | | disulfide bridges and hydrogen bonds between R groups. | Ionic Bonds | Oppositely charged acidic and basic R groups attract each other. | | | | | | Quaternary structure refers to the association of two or more polypeptide chains . It is held together by hydrophobic interactions , ionic bonds , disulfide | Disulfide Bridges | Sulfur containing R groups of cysteine can form covalent disulfide bonds. They increase the heat stability of the protein. | | | | | | dges and hydrogen bonds between R groups of no acid residues of different polypeptides. | Hydrogen Bonds | O and N are electronegative and the H of -NH or -OH groups are electropositive. Polar R groups containing these groups attract each other. | | | | | | Describe how the structure of haemoglobin is related to its function. | | | | |---|---|--|--| | Structure | Function | | | | Secondary Structure: only α -helices. Tertiary Structure: only hydrogen bonds, ionic bonds and hydrophobic interactions, no disulfide bonds. Quaternary Structure: four polypeptide subunits: two α -globin subunits and two β -globin subunits. | Haemoglobin is a globular transport protein that transports oxygen in the blood. | | | | Haemoglobin has a quaternary structure made up of four polypeptide subunits: two α -globin subunits and two β -globin subunits. Each subunit is arranged so that most of its hydrophilic amino acid side chains are on the external surface while its hydrophobic amino acid side chains are buried in the interior. | This makes haemoglobin soluble in an aqueous environment and allows it to be transported and carry <math>0_2</math> from lungs to tissues and vice versa. | | | | Each subunit is made of a globin polypeptide and a prosthetic haem group , each consisting of a porphyrin ring and Fe ²⁺ . | The $\mathbf{Fe^{2+}}$ of the haem group binds $\mathbf{temporarily}$ to O_2 so that one haemoglobin molecule can carry up to \mathbf{four} O_2 at a time forming oxyhaemoglobin. | | | | The 4 subunits held together by hydrogen bonds, ionic bonds and hydrophobic interactions between R groups and not disulfide bonds . | This allows movement of the haemoglobin subunits that influences its affinity for oxygen , allowing for cooperative binding of oxygen where as a result of the binding of one O_2 to one haemoglobin subunit, a conformational change is induced in the remaining three subunits, increasing their affinity for O_2 . | | | | Describe how the structure of collagen is related to its function. | | | | |---|---|--|--| | Structure | Function | | | | Primary Structure: glycine-X-Y where X is usually proline and Y is usually hydroxyproline. Secondary Structure: loose helix . Tertiary Structure: no tertiary structure. Quaternary Structure: three helical polypeptide chains wound together to form a tropocollagen molecule. | Collagen is a fibrous structural protein in connective tissues . | | | | A tropocollagen molecule consists of three helical polypeptide chains wound together. | This increases the tensile strength of the tropocollagen molecule. | | | | Each chain contains a repeating tripeptide unit of glycine-X-Y where X is usually proline and Y is usually hydroxyproline . | The bulky and relatively inflexible proline and hydroxyproline residues confer rigidity to the molecule. The small glycine residues allow the formation of a compact triple helical structure, increasing tensile strength . | | | | There are numerous hydrogen bonds formed between amino acids of adjacent polypeptide chains between –NH and –CO groups of the peptide linkage as well as between –OH groups of hydroxyproline residues. | This increases the tensile strength of the molecule. This makes the molecule insoluble in water since extensive hydrogen bonds are already formed between residues in different polypeptides, limiting interaction with water molecules; | | | | Adjacent tropocollagen molecules are arranged in a staggered manner, and there are covalent cross-links between lysine residues of adjacent tropocollagen molecules, forming collagen fibrils which lie in parallel bundles to form collagen fibers . | The staggered arrangement minimizes points of weaknesses along the fibrils, and increases the tensile strength . The large size of the molecule makes it insoluble in water. | | | | Compare fibrous and globular proteins. | | | | | | |--|--|---|--|--|--| | Point of Comparison | Fibrous | Globular | | | | | Shape | Long polypeptide chains forming long straight fibers. | Polypeptide chains folded into roughly spherical shape. | | | | | Solubility in
Water | It is large and limited in its ability to form hydrogen bonds with water as extensive hydrogen bonds are already formed between residues in different polypeptides. Hence, it is insoluble in water. | Polar R groups are exposed to the aqueous environment and can form hydrogen bonds with water molecules. Hence, it is soluble in water. | | | | | Amino Acid
Sequence | A smaller variety of amino acids is used to construct the protein, with a repetitive regular sequence of amino acids. | A larger variety of amino acids is used to construct the protein, with a unique amino acid sequence. | | | | | Length of
Polypeptide | Length of polypeptide and sequence of amino acids may vary slightly between two samples of the same protein, yet protein will still be functional . | Length of polypeptide and sequence of amino acids are always identical between two samples of the same protein, or else the protein may not be functional . | | | |