RAFFLES INSTITUTION RAFFLES PROGRAMME - YEAR FOUR CHEMISTRY

QUALITATIVE ANALYSIS

Types of Reactions

While we have learnt specific types of reactions such as Neutralisation, Redox, etc, it is important to note that a reaction just refers to chemical change in general. In particular, the formation of a solid, water, or a gas can be considered a chemical change and hence a reaction.

Formation of solid / Precipitation:

While this can occur for specific types of reactions, in general the formation of a solid upon mixing two solutions can be considered a reaction. Recall that aqueous compounds dissociate in water to form their respective cations and anions. When mixing aqueous solutions, it is possible to have a combination of cation and anion that results in an insoluble salt. Thus a precipitate would be produced. [This can also be thought of as a 'dance' where the ions switch partners and see if any insoluble salt is produced.]

Formation of water: H+(aq) + OH-(aq) → H2O (I)

Formation of gas:

Recall these reactions (introduced in Acids and Bases)

Acid - Carbonate:	Acid + Carbonate	\rightarrow	Salt + Water H2O + Carbon Dioxide CO2
Acid - Reactive Metal:	Acid + Reactive Metal	\rightarrow	Salt + Hydrogen Gas H2
Acid - Sulfite (SO3)2-:	Acid + Sulfite Salt	\rightarrow	Salt + Water H2O + Sulfur Dioxide SO2
Base - Ammonium (NH4)+:	Base + Ammonium Salt	\rightarrow	Salt + Water H2O + Ammonia Gas NH3

You are also expected to remember the reactants and products / general equation for different types of reactions. These reactions include but are not limited to: Precipitation, Neutralisation, Acid Reactions, Base Reactions, Redox Reactions (Metal + Non-metal, Combustion, Displacement), Decomposition.

QA of Gases

Gas	Test	
Ammonia NH ₃	Moist red litmus \rightarrow Blue	
Carbon Dioxide CO ₂	Bubble through limewater (calcium carbonate) \rightarrow White ppt formed	
	(calcium hydroxide)	
Chlorine Gas Cl ₂	Moist blue litmus \rightarrow Red \rightarrow Bleached	
Hydrogen Gas H ₂	Extinguishes lighted splint with a 'pop' sound	
Oxygen Gas O₂	Relights a glowing splint	
Sulfur Dioxide SO ₂ (Reducing	Acidified potassium manganate (VII) KMnO ₄ (VII) Purple \rightarrow Colourless	
Agent)	OR	
	Potassium dichromate (VI) $K_2Cr_2OO_7$ Orange \rightarrow Green	

QA of Cations

Cation	Aqueous Sodium Hydroxide NaOH (aq)	Aqueous Ammonia NH3 (aq)
Calcium Ca2+	White ppt	No ppt
	Insoluble in excess	
Aluminum Al3+	White ppt	White ppt
	Soluble in excess; Colourless solution	Insoluble in excess
Lead Pb2+	White ppt	White ppt
	Soluble in excess; Colourless solution	Insoluble in excess
Zinc Zn2+	White ppt	White ppt
	Soluble in excess; Colourless solution	Soluble in excess; Colourless solution
Copper(II) Cu2+	Light blue ppt	Light blue ppt
Blue	Insoluble in excess	Soluble in excess; Dark blue solution
Iron(II) Fe2+	Green ppt; turns brown on standing	Green ppt; turns brown on standing
Pale green	Insoluble in excess	Insoluble in excess
Iron(III) Fe3+	Red-brown ppt	Red-brown ppt
Yellow/Orange	Insoluble in excess	Insoluble in excess
Ammonium (NH4)+	Ammonia produced on warming	-

Use CALZone for the white salts, With Calcium showing the least observations and Zinc showing the most. Aluminum and Lead can be distinguished using KI Potassium Iodide. Lead Iodide is an insoluble yellow salt while Aluminum Iodide is soluble.

Remember the coloured salts and Ammonium separately.

QA of Anions

Anion	Test	Test Result
Carbonate	Add dilute acid	Colourless, odourless effervescence (CO2)
(CO3)2-		produced that turns moist red litmus blue
		Bubble through limewater
Chloride	Acidify with dilute nitric acid,	White ppt (Silver chloride)
Cl-	then add aqueous silver nitrate	
lodide	Acidify with dilute nitric acid,	Pale yellow ppt (Silver iodide)
-	then add aqueous silver nitrate	
Sulfate	Acidify with dilute hydrochloric acid,	White ppt (Barium sulfate)
(SO4)2-	then add aqueous barium chloride	
Nitrate	Add aqueous sodium hydroxide	Ammonia produced
(NO3)-	then aluminum foil, warm gently	

Remember the solubility of the anions and link this with the tests and observations. The purpose of acidifying the solution is to remove carbonate ions that could result in a false positive result.

Tips and Answering Techniques

For observations, always talk about colour (of the precipitate and solution).

Always remember to state effervescence if you know the general reaction produces a gas. This observation is commonly forgotten.

Always phrase a non-result as a negative observation. For instance, instead of saying no visible change, make sure to say no precipitate formed, no colour change, white precipitate insoluble in colourless solution, etc.

When the colour of a substance is given, you can make some deductions on the unknowns. This list is not in syllabus and not exhaustive, just that it's good to know and may come in handy.

Colour (Solids)	Possible Identities
Black	Copper Oxide CuO, Manganese Oxide MnO2, Metal powder
Blue	Most Copper(II) compounds
Reddish-Brown	Iron(III) Compounds, Copper metal
Green	Copper Carbonate CuCO3, Iron(II) compounds
Yellow	Lead Iodide PbI2, Silver Iodide AgI (pale yellow)
Purple	Potassium Manganate (VII) KMnO4
White	Most compounds of Na+, K+, Ca2+, Zn2+, Al3+, Pb2+ and (NH4)+
	Insoluble Sulfates and Chlorides.

Colour (Liquids)	Possible Identities
Blue	Aqueous Copper(II) compounds
Brown/Reddish-Brown	Aqueous I2, Br2
Yellow/Brown	Aqueous FeCl3
Purple	Aqueous KMnO4
Red	Aqueous Co(NO3)2, Methyl orange in acid
Violet	Iodine solid dissolved in organic solvent

Other general guidelines:

When aqueous hydrogen peroxide H202 used, oxygen gas usually produced.

When concentrated hydrochloric acid HCl or aqueous sodium chlorate(I) NaClO3 used, chlorine gas usually produced.

When aqueous ammonia used in cation test, ammonia gas will be naturally produced, and hence observation and testing of ammonia gas is irrelevant and not given credit.