Lipids | _ | Structure | A glycerol backbone and three non-polar hydrophobic hydrocarbon tails linked to glycerol via ester linkages through a condensation reaction. | |----------|----------------|--| | | Ester Linkages | Ester linkages are formed between the -OH group and the -COOH group of glycerol and the fatty acid respectively. One water molecule is removed for each fatty acid joined to glycerol. | | rides | | Ester linkages are broken by hydrolysis into fatty acids and glycerol. | | Triglyce | Components | Explain the solubility of the products of hydrolysis of triglycerides. | | Tr | | Glycerol is a three carbon alcohol with polar hydroxyl groups that form hydrogen bonds with water. Hence, it is soluble in water. | | | | Fatty acids are composed of a long hydrocarbon chain with a carboxyl group at the end. They have a COO - group which can interact with water. Hence, short fatty acids are soluble in water. However, as the length of the non-polar hydrophobic hydrocarbon tail which cannot form hydrogen bonds with water increases, solubility decreases. | | | | Explain how the structure of triglycerides is related to its function. | |---------------|-----------|---| | Triglycerides | Function | There are numerous H and C and relatively fewer O atoms due to the long hydrocarbon tails with a high proportion of C-H bonds from which energy in the form of ATP can be released during oxidation during respiration . Hence, it is a compact energy store which stores more energy per unit mass (38kJg ⁻¹) than other respiratory substrates. Oxidation also releases metabolic water that is a source of water especially for desert animals. | | | | The long non-polar hydrophobic hydrocarbon tails cannot form hydrogen bonds with water and hence triglycerides are insoluble in water . Hence, they do not affect the water potential of the cell. | | | | Triglycerides found beneath the layer of skin provide thermal insulation as they are poor conductors of heat. They are less dense than water and hence improve buoyancy . They protect the internal organs from mechanical damage, acting as shock absorbers. They function as a reservoir for storage of fat soluble vitamins . | | Phospholipids | Structure | A glycerol backbone and two non-polar hydrophobic hydrocarbon tails linked to glycerol via ester linkages through a condensation reaction. The remaining hydroxyl group is joined to a negatively charged hydrophilic phosphate group. Hence, it is amphipathic . In an aqueous environment, they arrange to form a phospholipid bilayer with a hydrophobic core shielded from water. | | | Function | Phospholipids are major components of the phospholipid bilayer of cell membranes . They act as a barrier to polar and charged molecules as the hydrophobic core has a low permeability to polar and charged molecules. This allows the passage of these molecules across the membrane to be controlled by transmembrane transport proteins or ion channels . Membranes also act as a boundary between the intracellular and extracellular aqueous environment and allow compartmentalization . | | | | Phospholipids are a major component of liposomes which are artificial vesicles surrounded by a phospholipid bilayer that can be used to carry therapeutic DNA into a target cell. | | lo | Structure | Cholesterol has a hydrophobic four fused ringed structure with a hydrophilic -OH end making it an amphipathic molecule. | |-----------|-----------------|--| | Cholester | Function | Cholesterol aligns with phospholipids in the cell membrane with the –OH group interacting with the hydrophilic phosphate heads and the hydrophobic ring structure interacting with the long hydrophobic hydrocarbon tails of phospholipids. It regulates membrane fluidity by preventing excessive fluidity at high temperatures by restricting phospholipid movement while preventing freezing at low temperatures by preventing close packing of phospholipids | | | | Describe how a test for lipids can be carried out. | | | Test for Lipids | Add 2cm³ of ethanol to the test sample in a test tube. Mix well and allow to stand for 2 min. Decant the ethanol into another test tube containing 2cm³ of water . Lipids are present if a homogenous solution is formed with ethanol and an emulsion is formed with water. If lipids are absent, a clear solution remains. |