Immon Mittakes by Topic	Date.	Page.
DIFFERENTIAL EGNS		
- make sue the us regative if deveaning		
-renember to add c/d after integrating!		
-renember to No tec with A / another constant => fl	en just find value of	A
- If $\frac{dy}{dx} = y(ty)$, divide $y(ty)$ on both rides		
- to shetch family of curves, it is usually -1,0,1 for		
- no. of stationary points depend as no. of solution -	to the	
-note which are constants and which are variables		
- Wan shetching graphs, note the domain given by the BINOMIAL EXPANSION	, question t the cont	ext leg pop cannot be less (than o)
- make rue the expansion term is grouped as contra	nt vs variable cg. ($1+(x^{1}+x^{3}))^{-1}$
- make sure to fustonise of such that the constant te		
- in considency validity of expansion, we the whole x then consider 1251<1	-tem after factorization	eq. $(f (3+x^2)^{+} \rightarrow \frac{1}{3}(1+\frac{x^2}{3})^{+})$
- if (1-x) + [both -ve] then well of all terms port	the	
if (1+x)+ , then well of terms u +		
-if you see natical franctizar use level examplish		
- For (1+x)n, the (+1)th term has coeff n(n+)	r!	
- For expansions thismy (X+) (X+1) + remember	that (2.1) will nut	be pont of the coeff
- For Nortitutions to Rind value, choose value with		4
within valid rarege	5	
$-\overline{r}_{V}$ (1+x) ⁿ , $iF_{n,70}$, $(H_x)^n = a+b+\dots+c \in$	- must have ending	Liency due not go an
(nfinitely)		-
- if expansion renew has a constant eg. (112) ^m ,	x of all sufs of	powers will be produced j
honever if it is pively x terms eg. (x2+34)",	then lovest power in	n the series will be the
What power in the expression to the pover of	n re. xn.	
MACLAVRIN SERIES		
-renamber to divide each differential term by the	. corresponding facto	nal
ç		morning alory 🛞

÷

morning glory 😽

-also factorise at the constant to make sue the constant = ley. In (2+x) = In2 + In(1+2)
- for likear approximation, just take the terms which will firm a like i
$-\sin x = x$ $\cos x = 1 - \frac{x^2}{2}$ $\tan x = x$
-if it is notice, can just use formula; if it is sin (20+6), then we compared 2 formula
-renember that durominator can be expressed as power-1
- noter of the remer must be puritive real numbers (not freechan)
- For duble approximation, it is usually inside to atside
- IF you see a finse, as x, ex, in (HX) with a variable (su), then consider madavrin
scher
INEGUALITIES & SLES
- Wan a number u multiplied by a regotive number, inequality sign switches ; humbers remain
in their pointion ; reciprocal also flip right
- draw number lites and use shaded or empty circles
- consider intersection of number likes if it is AND jifit u or , don't feed cg. x <b or="" x="">b
nears all IR
-draw graph: to find (reguality (F. Smotion cannot be carily drawn / of higher power - in using GC to plot graphs, try to make are side = 0. Then key in FLX) and y=0 believe
- in using GC to plut graphs, try to make are side = 0. Then key in FLX) and y=0 believe
using intersect command to bird another
-fr SLEs, renember # = 0 can also firm another equation
FUNCTIONS
-be cateful when to use square brackuts or rand brackets
-vie shaded is empty arder fr graphs
- Can use GC to get domain for a B
- to determine if it is a function + use vertical like test; to determine if it is I to I + use hanzantal
live test
-use domain to determine if it is ±Jata
-phycipal domain of since and tank a -ELXSE ; for we x it is OSXSTI
the similey & simple is and for cus and fan

- I drawing for graph, make size f and for intersect at y=x. - - ft f = x and fft = x unless domains & range don't match Page -> find solution of find=ft(x), use f(x)=x instead -fr que that involve folly = folle, then find what is from the find what value of n in : frollo=x; frol7=fly - to check for equivalent functions must check domain as well - FFERENTIATION - rmbr that the cot x = corect ; the recx = recx tanx; the corecx = - coreculate -trontx, cust x, tant x, remember to differentiate the x as cell!! - Imbr that $fic \log_a f(x) = \frac{f'(x)}{f(x)} \ln a$; $fic a^{f(x)} = (f'(x)(a^{f(x)})(\ln a))$ - if you want to differentiate $(\frac{dy}{dx})^2$, theat it as a variable; $\frac{dy}{dx}(\frac{dy}{dx})^2 = 2(\frac{dy}{dx})(\frac{dy}{dx})$ -for parametric equation, use the = the x the or plut a graph and use for to calculate - rmbr gradient of a like can also be represented as tang -for rate of charge, remember to p4 we righ if it is decreaning -fr maxima minima, use first derivative or and derivative to cleck -direern which u contant, which a variable -differentiate CAREFULLY 0.0 -find the equation to link 2 variables together -ff"(x) >0, graph u U; if f" (u) <0, graph u A -fir graph of fly vs flu), straight like in flud only if flx) is a quadratic ance ; vertical asymptotic remains; horizontal / diagonal asymptote depends on differentiation. TEQUENCES & SERIES -read context carefully for shis questions - try to deduce a trend - for recurrence relation type of question, for algebraic nethod, try to firm an expression with factus ey graduitic -to pulle firmula of summation of GAP, consider Sn-rSn -no of terms in signa nutation (n-n+1) - For signa notation, behave of which terms actually vary leg. Zir) and which don't (eg. Zi a) -if they tell you abt partial markon, likely MUD

249HING TECHNIQUES

an consider partial fractions; present when numerator is I power higher than denuminator - y=ex -> honzontal asymptote + y=lnx -> vertical asymptote +F = it > horizontal & vertical asymptic I or Ir , y= xtb > obligue & vertical It--circles, RHS =r2 (dues not tend to be equal to 1) Fr ellipse, same family as circles (x^2+y^2) ; RHS^2 ; $(x-h)^2 + (y-k)^2 = 1$; a = radius parallel to x - axisdeligive asymptote: $(y-h)^2 \rightarrow (x-h)^2$; (h,h) is intersection of asymptotes - ponciholes : $(y-h)^2 = p(x+h)^2 \rightarrow (x-h)^2$; $(x+h)^2 = p(y+h) \cup \cap (x-(h,h)) + the turning pt of the parcipoles$ - for ellipsic & hyperbola, denominator under 22/y2 concepted to length parallel to x-axis and y-onois -parametric, can use GE to ret limit - mbr to mark out cound of intercepts, stationary pti etc -we hand such as scale / translate / reflect in the positive / te x/y direction - Hyou stretch than translate: the whole X and the scale factor will be affected by tran. lation X> そ → 生 vs translate than stretch (k → Ltd → ±+2; [Jane for y but must work at an yside bef transposing to the square nort function, vertical asymptote remains; hinizontal mill becare I; oblique can jufl ignore Ar ic-intercept, non-repeated nut targent charge from oblique to vertical, repeated root charge from horizontal is idique (note: only if it is x-intercept !!.) -ir reciprical, vertical asymptic -> x-intercept (& vice versa); hunizontal will become -; oblique -> y=0 min pt + max pt (evice versa); if flul & t, then fix I and vice versa -If translation Iscalling a dose on eqn of circle (cllipse etc., note the powerd. Timbr that area under graph charge with transformation behave of I types of gru - Oash you to find values of y where there are no points on graph (we be to find turning pts is equate the graph to a constant e.g. $\frac{2^2 + 3n}{2c-1} = k \rightarrow vie$ discomminant) I find range of values of he with 2 stationary pts $(y = \frac{2c^2 + 1nc}{2c-2}) \rightarrow vie \frac{dy}{de}$

COMPLEX NUMBERS
-can compare the and lim parts only if whinawns are real
romember to only include welficiant when finding modulus / argument
$-(z_1 \pm z_2)^* = z_1^* \pm z_2^*$
$-zz^{k} = Z ^{2}$
-r in polar & exporential firm mutalways be >0
- When sheetching works in an argand diagram, remember to label the k, ander, dotted like, modulus & angles
- can consider complex humbers as vectors stimes
-fir argund diagram, it is the coordinates that are labelled (X the complex no.)
- Keep calm and ree which type of luci it is
- fir circle: label center & rudius; fir I bisector: label night angle; start pt d end pt; dutted like
fir halflike: empty circle; angle
-shade the connect value for z esp if it occupies 21003
recognile polar exponential form e ^{io} and e ^{-io} => summation = 2 Re
- can consider factorisity C ¹² to firm conjugate pairs
- for loci, shine may have to factorise of imaginary number to make well of z=1.
-can use tun of any to find gradient of like.
INTEGRATION
-vmbr to put mud sign for In where appropriate
-alhayy try to convert a fraction into a summation of a few fractions
- For Sx+2q2 and Sat-x2, if well of X 11 nul 1, must concernible to divide awherby well.
-remember to add tc? (and S. 1/2-2-)
-fir substitution, remember to sub back
-Ar integration by parts, nature of u and v u vovally different
- if it i Slifled dre them must split S fix) die + S-flad die
-fir area under graph (in terms of the rectargles), behave which point on the curve refers to
which leight of the recitangle
-if it is to find area fic parametric equations, then must up in parameter

- In = I sind (evaluate the / the build on range) TIERS -men they ark you for locus of mid-point, equate / No the sc and y together by parameter to get the an - $\pi n^2 \theta + (\alpha s^2 \theta = 1 + 1 + t \alpha n^2 \theta = sec^2 \theta + 1 + cot^2 \theta = Calec^2 \theta$ - Area = $\frac{1}{2}$ absinc - cos C = $\frac{a^2 + b^2 - c^2}{2ab}$ $-m_{r}^{n} = \frac{n!}{(n-r)!} ; nCr = \frac{n!}{r!(n-r)!}$

morping alory S