FIELDS

10.1-10.2 Describing Fields, Fields at Work

(A) Comparing Fields

Gravitational and Electric Fields behave similarly. These are the differences in their characteristics:

	Gravitational Field	Electric Field
Type of Field	G-Field by 1 Mass Interaction of G-Fields	ines Opposite Charge E-Field Like Charge E-Field Parallel Plate E-Field
Force, F	Gravitational Force - An attractive force exerted by an object on other objects in its field by virtue of its mass. $F_g = \frac{GMm}{r^2}$ where G is the Gravitational Constant; M is the mass of the primary field-producing object and m is the test mass. *follows Newton's Law of Gravitation (Topic 6.2)	Electrostatic Force - An attractive or repulsive force exerted by an object on other objects in its field by virtue of its mass. $F_e = \frac{kQq}{r^2}$ where k is the Coulomb Constant; Q is magnitude of the primary field-producing charge and q is the magnitude of the test charge. *follows Coulomb's Law of Electrostatics (Topic 5.1)
Field Strength, g or E	Gravitational Field Strength - Force Exerted by Field Per Unit Mass $g = \frac{F_g}{m} = \frac{GM}{r^2}$	Electric Field Strength - Force Exerted by Field Per Unit Charge $E = \frac{F_{\epsilon}}{q} = \frac{kQ}{r^2}$
Potential, V	Gravitational Potential - Potential Energy per unit test mass exerted by the field.Gravitational Potential Difference - Work done per unit mass in moving an object between two points. $V_g = -\frac{GM}{r}$ Gravitational Potential Gradient measures the change in Potential, V with respect to Radius, r and is equal to $-g$. $\Delta V_g = -\frac{GM}{m} = -\frac{GM}{\Delta r}$ *Work Done, mAV, is negative as Potential Energy increases when distance falls.	Electric Potential- Potential Energy per unit test charge exerted by the field.Electric Potential Difference - Work done per unit charge moving an object between two points. $V_e = \frac{kQ}{r}$ Electric Potential Gradient measures the change in Potential, V with respect to Radius, r and is equal to $-g$. $\Delta V_e = \frac{W}{q} = \frac{kQ}{\Delta r}$ *Sign of Work Done, $q\Delta V$, follows the Sign of the Charge. $\Delta V_e = \frac{W}{q} = \frac{W}{qr}$
Potential Energy, <i>E</i> _P .	<u>Gravitational Potential Energy</u> is the work done by an external force in moving a test mass from infinity to a point in the field. $E_p = mV_g = -\frac{GMm}{r}$	Electric Potential Energy is the work done by an external force in moving a test charge from infinity to a point in the field. $E_{P} = qV_{e} = \frac{kQq}{r}$
Interaction of Multiple Fields	$\begin{bmatrix} m_{2} & U_{total} = U_{31} + U_{21} + U_{23} \\ - \left(\frac{Gm_{1}m_{3}}{3d} + \frac{Gm_{1}m_{2}}{2d} + \frac{Gm_{2}m_{3}}{d} \right) \\ = -\left(\frac{Gm_{1}m_{3}}{3d} + \frac{Gm_{1}m_{2}}{2d} + \frac{Gm_{2}m_{3}}{d} \right) \\ = -\frac{Gm_{1}m_{3}}{3d} \\ = -\frac{Gm_{1}m_{3}}{3d} + \frac{Gm_{2}m_{3}}{2d} + \frac{Gm_{2}m_{3}}{d} \\ = -\frac{Gm_{1}m_{2}}{2d} + \frac{Gm_{2}m_{3}}{2d} \\ = -\frac{Gm_{1}m_{2}}{2d} + \frac{Gm_{2}m_{3}}{d} \\ = -\frac{Gm_{1}m_{2}}{2d} + \frac{Gm_{2}m_{3}}{2d} \\ = -\frac{Gm_{1}m_{2}}{2d} + \frac{Gm_{2}m_{3}}{d} \\ = -\frac{Gm_{1}m_{3}}{d} \\ = -\frac{Gm_{1}m_{$	$Q_1 = \frac{kQ_1}{r_1} + \frac{kQ_2}{r_2} + \frac{kQ_3}{r_3}$ $Q_2 = Q_3$ $P_2 = Q_3$ $P_2 = \frac{kQ_1}{r_3} + \frac{kQ_2}{r_2} + \frac{kQ_3}{r_3}$ $P_3 = \frac{P_1 + P_2 + P_2}{P_2 + P_3}$ $P_4 = \frac{P_1 + P_2 + P_2}{P_3 + P_2}$ $P_4 = \frac{P_1 + P_2 + P_3}{P_3 + P_2}$ $P_4 = \frac{P_1 + P_2 + P_3}{P_3 + P_2}$ $P_4 = \frac{P_1 + P_2 + P_3}{P_3 + P_2}$ $P_5 = \frac{P_1 + P_2 + P_3}{P_3 + P_2}$ $P_5 = \frac{P_1 + P_2}{P_3 + P_2}$ $P_5 = \frac{P_1 + P_2}{P_1 + P_2}$ $P_5 = \frac{P_1 + P_2}{P_2 + P_2}$ $P_5 = \frac{P_1 + P_2}{P_1 + P_2}$ $P_5 = \frac{P_1 + P_2}{P_2 + P$

Important Notes:

- 1. Work is done when an object moved along the field line. No work is done if movement is perpendicular to the field-induced force.
- 2. The common approximation g = 9.8ms⁻¹ is only able to be used at the Earth's surface and not in space.
- 3. The other main field which does work is Magnetic Field, but does not influence objects the same way as Gravitational and Electric Field.

