Control of Prokaryotic and Eukaryotic Genome

Genomic level

Eukaryotic only

- Chromatin remodelling complex
 - Made up of proteins that alter the structure of nucleosomes
 - Regulation:
 - Alters the structure of nucleosomes temporarily ⇒ DNA being less/more tightly bound to histones ⇒ Chromosomes condense/decondense
 ⇒ Allow/Prevent RNA polymerase and transcription factors access to the
 - Anow revent rail of polymeraee and trailed pilot hadders about to
 - promoter to initiate transcription \Rightarrow Promotes/Inhibit transcription
- DNA methylation (<u>Prevents</u> transcription)
 - Regulation:
 - Addition of <u>methyl</u> group to selected cytosine nucleotides found in sequence CG ⇒ Recruits DNA-binding proteins to the methylated DNA to condense chromatin + Blocks binding of transcription factors and RNA polymerase to the promoter ⇒ Prevents transcription
- Histone acetylation (Promotes transcription)
 - Addition of acetyl groups to lysine residues by histone acetyltransferase
 - Regulation:
 - Removes <u>positive charges</u> on histones ⇒ <u>Decreases the electrostatic</u> <u>interactions</u> between negatively-charged DNA and histones ⇒ Loosens binding between DNA and histones ⇒ Makes the region more accessible to RNA polymerase and general transcription factors ⇒ Promotes transcription
- Histone deacetylation (<u>Prevents</u> transcription)
 - Removal of acetyl groups from lysine residues by histone deacetylase
 - Regulation:
 - Restores positive charges on histones ⇒ Increases the electrostatic interactions between negatively charged DNA and histones ⇒ Restores the tight interaction between DNA and histones ⇒ Makes the region less accessible to RNA polymerase and general transcription factors ⇒ Inhibits transcription
- Gene amplification
 - Increase copy number of a specific gene
 - Replicating the specific gene multiple times ⇒ Create more copies of the gene ⇒ More copies of mRNA ⇒ More copies of the required protein
 - To meet the high demand of the protein during certain stages of development
 - Mechanisms
 - 1. Rolling circle mechanism
 - Genomic chromosomes give rise to an extrachromosomal circular

DNA carrying the gene of interest

- **Many copies of this circular DNA are then synthesised through the rolling circle mechanism
 - 1. One strand of dsDNA nicked
 - 2. DNA polymerase adds nucleotides to free 3' OH end to synthesise complementary DNA strand using intact strands as a template
 - 3. 5' end of nicked strand displaced as synthesis proceeds
 - 4. Displaced strand used as template and replicated discontinuously
- 2. Multiple rounds of DNA replication
 - Origin of replication in the DNA at the specific region of the chromosome initiates replication repeatedly and terminates randomly
 - Produces replication bubbles nested within larger replication bubbles, hence producing more copies of the gene of interest in the chromosome

Transcription

<u>Eukaryotic</u>

- Promoter strength
 - Critical elements
 - TATA box at -25 site determines precise location of transcription start site
 - **CAAT and GC boxes** improve efficiency of promoter by helping to recruit general transcription factors and RNA polymerase
 - Similarity of critical elements to consensus sequences are not crucial in controlling gene expression (rely more on enhancers/silencers)
- General Transcription Factors
 - Complementary in shape and charge to the TATA/CAAT/GC box/promoter
 - Binds to promoter region and recruits RNA polymerase to form transcription initiation complex to initiate transcription of the genes
- Presence of regulatory proteins
 - Activators → Enhancer
 - Increase efficiency of transcription by <u>promoting assembly of transcription</u> <u>initiation complex</u> when bound to <u>enhancer region</u> by:
 - Bending of spacer DNA to allow direct interaction of activators with RNA polymerase/general transcription factors at promoter
 - Recruiting histone acetylase/chromatin remodelling complex to increase accessibility of promoter DNA to RNA polymerase/general transcription factors
 - Repressors \rightarrow Silencer
 - Reduce efficiency of transcription by <u>inhibiting assembly of transcription</u> <u>initiation complex</u> when bound to <u>silencer region</u> by:
 - Interfering with action of activator
 - Competitive DNA binding

- Masking activation surface
- Direct interaction with general transcription factors
- Changing chromatin structure by recruiting histone deacetylase/chromatin remodelling complex

Prokaryotic

- Operon
 - Genes coding for proteins involved in <u>same biochemical pathway</u> clustered together on one operon, controlled by a **single promoter** and transcribed into a single **polycistronic mRNA**
 - Polycistronic mRNA has independent start and stop codons ⇒ Translated independently
 - Allows the bacteria to coordinately regulate a group of genes that encode gene products with related functions ⇒ More efficient gene control
 - Regulation:
 - <u>Repressor</u>: Binds to <u>operator</u>, preventing RNA polymerase from binding to promoter, thereby preventing gene transcription
 - <u>Inducer</u>: Binds to and inactivates repressors, increasing transcription frequency (e.g. allolactose)
 - <u>Corepressor</u>: Binds to and activates repressors, preventing gene transcription
 - <u>Activators</u>: Binds to binding sites in the promoter, increasing affinity of RNA polymerase to the promoter, increasing transcription frequency (e.g. CAP)
- Promoter
 - Strength determined by how similar the **critical elements** [-10 (**Pribnow box**) and -35 sequences] are to the **consensus sequence**
 - Strength of promoter determines the frequency of transcription
- Sigma Factor
 - RNA polymerase holoenzyme = Core polymerase + Sigma factor
 - Recognises and binds to critical elements at promoter
 - Regulation:
 - Different sigma factors recognise different promoters
 - Availability of sigma factors determines which promoters the RNA polymerase holoenzyme can bind to and hence which set of genes are transcribed

Post-Transcription

Eukaryotic only

- 1. 5' 7-methylguanosine cap of mRNA
 - Importance:
 - Helps cell to recognise mRNA ⇒ Ensures subsequent steps occur on the

correct RNA molecule

- Signals proteins to export mRNA out of the nucleus via nuclear pores
- Stabilises mRNA by protecting growing pre-mRNA from rapid degradation by cellular RNases
- Recognised by eukaryotic initiation factors which recruits small ribosomal subunit to mRNA, thus promoting translation initiation
- 2. Alternative splicing
 - Introns excised and exons are joined together by spliceosomes
 - Spliceosomes made up of proteins and snRNA
 - Importance:
 - Allows 1 gene to generate different mature RNA by splicing together different combinations of exons and hence, different polypeptides which can control different metabolic activities
- 3. 3' poly-A tail of mRNA
 - Importance:
 - Enhances half-life of mRNA by slowing down its degradation by RNases in the nucleus and cytoplasm
 - Serves as a signal to direct the export of mature mRNA from nucleus to cytoplasm
 - Works with 5' cap to regulate mRNA translational efficiency

Translation

<u>Eukaryotic</u>

- mRNA stability
 - Influenced by length of poly-A tail
 - More stable \Rightarrow 1 half life \Rightarrow Can be used as template for translation for longer
 - period \Rightarrow ↑ protein product
 - Regulation:
 - mRNA degradation
 - 3' poly-A tail steadily removed by RNase
 - Once critical length reached, removal of 5' cap is triggered
- Binding of small ribosomal subunit
 - Small ribosomal subunit binds to 5' cap of mRNA
 - Regulation:
 - Translational repressor protein can bind to 5' cap or 3' UTR ⇒ Interferes with the interaction between 3' poly-A tail, 5' cap and small ribosomal subunit ⇒ Blocks binding of small ribosomal subunit ⇒ Blocks translation
 - Phosphorylation/Dephosphorylation of eukaryotic initiation factors determines their availability for translation

Prokaryotic

• mRNA stability

- Regulation:
 - Prokaryotic mRNAs have relatively short half-life which allows for rapid degradation by RNases ⇒ Allows cell to control gene expression by rapidly adjusting rate of synthesis of proteins
 - Synthesis of antisense RNA complementary to mRNA ⇒ Complementary base pairs with mRNA to form dsRNA ⇒ Blocks translation and targets the dsRNA for degradation by RNases
- Binding of small ribosomal subunit
 - Regulation:
 - Prevent binding of small ribosomal subunit, hence blocking translation initiation by:
 - Binding of translational repressor protein at/near Shine-Dalgarno sequence
 - Binding of anti-sense RNA complementary to mRNA at/near Shine-Dalgarno sequence
 - Regulating availability of Initiation factors

Post-Translation

Eukaryotic only

- Covalent modification
 - Regulation:
 - Further processing of polypeptides to form <u>functional proteins</u> by cleavage and/or covalent modification
 - e.g. glycosylation, disulfide bond formation, attachment of prosthetic groups
- Phosphorylation and dephosphorylation
 - Regulation:
 - Regulates cellular activity through phosphorylation by kinase or dephosphorylation by phosphotase
- Protein degradation
 - Determines how long the protein will remain in the cell to control protein activity/prevent aberrant activity
 - Proteins not needed can be hydrolysed to amino acids to be used for synthesis of new proteins
 - 1 polypeptide can be modified to form many different proteins ⇒ Smaller genome required
 - Regulation:
 - Addition of <u>ubiquitin</u> by ubiquitin ligase to the protein to tag for degradation
 - Proteasome recognises ubiquitin-tagged protein and cleaves the protein into smaller peptides that can be further degraded in cytoplasm

Julian Tan | More free notes at tick.ninja