Cell Division | Homologous
Chromosomes | A pair of genetically different chromosomes, one of paternal and one of maternal origin, which have the same genes but may have different alleles at corresponding loci . They are similar in size , shape , centromere position and staining pattern . | |---------------------------|--| | Sister Chromatids | Genetically identical with the same alleles as they are the result of semi-conservative DNA replication during S phase of interphase. | | Describe the process of mitosis. | | | |----------------------------------|--|--| | Stage | Process | | | Before Mitosis | There is semi-conservative DNA replication during S phase of interphase, producing genetically identical sister chromatids . | | | (Interphase) | At the end of interphase, the chromatin is duplicated , the nuclear envelope is intact , the nucleolus is present , and the centrosome is replicated . | | | | Chromatin condenses to form chromosomes with two genetically identical sister chromatids joined at the centromere . | | | Prophase | Centrioles migrate to opposite poles and spindle fibers form , extending from each pole to the kinetochores and metaphase plate. | | | | The nuclear envelope disintegrates and the nucleolus disappears as it is not needed as no rRNA is synthesized during mitosis. | | | I Merannase I | Kinetochore microtubules from both poles, attached to the centromere of chromosomes with two genetically identical sister chromatids, align the chromosomes singly at the metaphase plate . | | | Anaphase | Centromeres of each chromosome divide and sister chromatids, now chromosomes are pulled to opposite poles centromere first as kinetochore microtubules shorten. Anaphase is very short-lived stage and quickly proceeds to telophase since separation of sister chromatids occurs very fast. | | | | Non-kinetochore microtubules elongate, causing the two poles to move further apart. | | | | Describe the process of mitosis. | | |-------------|---|--| | Stage | Process | | | Telophase | The chromosomes uncoil into long and thin chromatin. The spindle fibers disintegrate and the nuclear envelope reforms around the chromosomes at each pole. The nucleolus reappears. | | | Cytokinesis | Animal cells: The cell membrane between the two nuclei invaginates , forming a cleavage furrow with the help of microtubules . The cell membrane fuses forming two daughter cells. Plant cells: Vacuoles appear in the middle of the cell, coalescing to form a cell plate and separating the two daughter cells. | | | Describe the process of meiosis. | | | |----------------------------------|---|--| | Stage | Process | | | Before Meiosis
(Interphase) | There is semi-conservative DNA replication during S phase of interphase, producing genetically identical sister chromatids . At the end of interphase, the chromatin is duplicated , the nuclear envelope is intact , the nucleolus is present , and the centrosome is replicated . | | | Prophase I | Chromatin condenses to form chromosomes with two genetically identical sister chromatids joined at the centromere. Synapsis occurs and homologous chromosomes pair up to form bivalents. Crossing over occurs between non-sister chromatids of homologous chromosomes at chiasmata. Corresponding portions of the non-sister chromatids of homologous chromosomes break and rejoin, resulting in exchange of alleles. Centrioles migrate to opposite poles and spindle fibers form, extending from each pole to the kinetochores and metaphase plate. The nuclear envelope disintegrates and the nucleolus disappears. | | | Describe the process of meiosis. | | | |----------------------------------|---|--| | Stage | Process | | | Metaphase I | Kinetochore microtubules from both poles, attached to the centromere of chromosomes, align the homologous pairs of chromosomes in two rows at the metaphase plate . Each homologue is attached to the kinetochore microtubule from the pole it faces. | | | | Independent assortment of homologous chromosomes occurs as the orientation of a pair of homologous chromosomes is completely independent of other pairs. | | | Anaphase I | Kinetochore microtubules shorten , causing homologous chromosomes to separate to opposite poles, moving centromeres first . Centromeres do not separate and sister chromatids remain attached. | | | | Non-kinetochore microtubules elongate, causing the two poles to move further apart. | | | | Each pole now has a haploid set of chromosomes, each consisting of two sister chromatids . The chromosomes uncoil into long and thin chromatin . | | | Telophase I | The spindle fibers disintegrate and the nuclear envelope reforms around the chromosomes at each pole. The nucleolus reappears . | | | | Some cells skip telophase I and cytokinesis, entering prophase II directly after anaphase I. | | | Cytokinesis | Animal cells: The cell membrane between the two nuclei invaginates , forming a cleavage furrow with the help of microtubules . The cell membrane fuses forming two daughter cells. | | | | Plant cells: Vacuoles appear in the middle of the cell, coalescing to form a cell plate and separating the two daughter cells. | | | | Chromatin condenses to form chromosomes with two sister chromatids joined at the centromere . | | | Prophase II | Centrioles duplicate and migrate to opposite poles and spindle fibers form , extending from each pole to the kinetochores and metaphase plate. | | | | The nuclear envelope disintegrates and the nucleolus disappears. | | | Describe the process of meiosis. | | | |----------------------------------|--|--| | Stage | Process | | | Metaphase II | Kinetochore microtubules from both poles, attached to the centromere of chromosomes, align the chromosomes singly at the metaphase plate . | | | метарнаѕе п | The orientation of sister chromatids of each chromosome is completely independent of the orientation of the other chromosomes. | | | Anaphase II | Centromeres of each chromosome divide and sister chromatids , now chromosomes are pulled to opposite poles centromere first as kinetochore microtubules shorten . | | | | Non-kinetochore microtubules elongate, causing the two poles to move further apart. | | | | The chromosomes uncoil into long and thin chromatin. | | | Telophase II | The spindle fibers disintegrate and the nuclear envelope reforms around the chromosomes at each pole. The nucleolus reappears . | | | Cytokinesis | Animal cells: The cell membrane between the two nuclei invaginates , forming a cleavage furrow with the help of microtubules . The cell membrane fuses forming two daughter cells. | | | | Plant cells: Vacuoles appear in the middle of the cell, coalescing to form a cell plate and separating the two daughter cells. | | | State the differences between mitosis and meiosis. | | | |--|--|--| | Point of Comparison | Mitosis | Meiosis | | Location | Somatic cells in all parts of the body. | Reproductive organs, giving rise to gametes. | | Nuclear Divisions | Once. | Twice. | | | Homologous chromosomes do not pair up via synapsis and there is no formation of bivalents. | Homologous chromosomes pair up during synapsis to form bivalents at prophase I. | | Prophase | No chiasma formation and crossing over and hence no exchange of equivalent portion of genetic material occurs between homologous chromosomes. | There is chiasma formation and crossing over occurs such that exchange of equivalent portions of genetic material occurs between non-sister chromatids of homologous chromosomes during prophase I . | | Motanhaga | Chromosomes align singly at the metaphase plate during metaphase. | Homologous chromosomes aligned as pairs at metaphase plate during metaphase I . | | Metaphase | Centromere of each chromosome attached to spindle fibers from both poles . | Centromere of each chromosome attached to spindle fibers from one pole . | | Anaphase | Centromeres separate, causing genetically identical sister chromatids to separate to opposite poles during anaphase. | Centromeres do not separate and homologous chromosomes separate to opposite poles, and hence sister chromatids move to the same poles during anaphase I. I | | | | Centromeres separate causing non-identical sister chromatids to separate to opposite poles during anaphase II. | | Telophase | Two genetically identical daughter cells formed and hence no variation occurs. | Four genetically different daughter cells formed and hence variation occurs. | | теюрпаѕе | Daughter cells have the same number of chromosomes as parental cells. | Daughter cells have half the chromosome number as parental cells. | | Mitosis | Importance | Explain the importance of mitosis. | | |---------|-------------------|--|--| | | | Mitosis produces two genetically identical daughter cells so as to maintain genetic stability . Mitosis maintains same type and number of chromosomes . This allows for the replacement of damaged cells and thus the repair of tissue . An increase in cell numbers through mitosis allows for growth of the organism. Mitosis allows asexual reproduction which is advantageous in a stable environment. | | | | Genetic Stability | Describe the role of mitosis in maintaining genetic stability. | | | | | During S phase of interphase, semi-conservative DNA replication where each strand of DNA acts as a template for the synthesis of the complementary strand via complementary base pairing . This results in the formation of chromosomes with genetically identical sister chromatids . | | | | | During metaphase , chromosomes align singly on metaphase plate . During anaphase, centromere divides and the kinetochore microtubules from either pole attached to each sister chromatids, shortens , causing genetically identical sister chromatids to be separated and move to opposite poles centromeres first , ensuring equal distribution of chromosomes. | | | | | The new daughter cells have same number and type of chromosomes with the same alleles as the parental cell, thus maintaining genetic stability . | | | | | Explain the need for reduction division in meiosis. | |---------|-----------------------|--| | | Reduction
Division | Reduction division is the production of four haploid gametes from a diploid cell during meiosis . | | | | Hence, when the sperm and egg fuse during fertilization , it gives rise to a diploid zygote , resulting in restoration of chromosome number . Thus, the chromosome number of the species remains the same after many generations. If meiosis did not occur, the fusion of gametes during sexual reproduction will result in the doubling in chromosome number with each generation. | | S | | The haploid gametes formed by meiosis allows for random fusion of gametes , which combines genetic material from two individuals giving rise to variation in the offspring. In producing haploid gametes, there is independent assortment of homologous chromosomes during metaphase I , leading to a variety of gametes with different combinations of maternal and paternal chromosomes and hence variation in offspring. In addition, crossing over between non-sister chromatids of homologous chromosomes at chiasmata during prophase I results in new combinations of alleles in the chromosomes and gametes and hence variation in offspring | | Meiosis | | Explain how meiosis can lead to genetic variation. | | M | | Crossing over between non-sister chromatids of homologous chromosomes at chiasmata during prophase I leads to exchange of genetic material, forming non-identical sister chromatids with new combinations of alleles on chromosomes. | | | Genetic Variation | Independent assortment of homologous chromosomes at the metaphase plate during metaphase I, where the arrangement of one pair of homologous chromosomes is independent of the arrangement of the other pairs, and the subsequent separation of homologous chromosomes during anaphase I results in gametes with 2 ⁿ possible combinations of maternal and paternal chromosomes where n is number of chromosome pairs. In addition, random orientation of sister chromatids of each chromosome at the metaphase plate during metaphase II and their subsequent separation during anaphase II also contributes to the new combination of alleles in the gametes. Hence, meiosis produces haploid gametes that are genetically different from the parent, contributing to genetic variation. | | | | Chromosome mutations may during meiosis where the chromosomes do not separate properly in nondisjunction , resulting in aneuploidy . | | | | During fertilization , the random fusion of gametes results in offspring with a variety of genotypes and possibly phenotypes. | | | Control of Cell
Cycle | Explain the importance of control over the cell cycle. | |--------|--------------------------|---| | Cancer | | It allows for coordination of growth and helps to minimize exposure to mutations as increases in the number of DNA replication cycles increases the chance of alterations to DNA. This prevents tumor formation by preventing uncontrolled cell division, preventing cancer . | | | Process | Explain how cancer results. | | | | Uncontrolled cell division occurs when cells escape the control mechanism that normally limits their growth, causing mutations . Proto-oncogenes are mutated to oncogenes which cause cells to divide excessively, causing a gain-in-function mutation. Tumor suppressor genes undergo a loss-of-function mutation, causing cells to lose their ability to stop dividing. The upregulation of telomerase removes the natural limit on the number of times the cell can divide which will lead to increased cell division . | | | | The lack of apoptosis and lack of contact inhibition result in tumor formation . Metastasis occurs and secondary tumors are formed. | | | | All these mutations are observed in a single line of daughter cells . Hence, the development of cancer is a multi-step process because for cancer to develop, all the regulatory checkpoints have to be disrupted and this requires an accumulation of mutations . | | | Factors | Chemical carcinogens such as benzene and exposure to uv light as well as infection with certain viruses can cause mutations in the nucleotide sequence of DNA and result in cancer. |