Control of Prokaryotic and Eukaryotic Genome | | Regulation | ion Only Eukaryotes | | |---------------|---|---|--| | Genomic Level | Gene
Amplification | Gene amplification allows the upregulation of gene expression by increasing the copy number of a specific gene in order to meet the higher demand for the gene product which cannot be met by transcription and translation of a single gene . In the Xenopus oocyte , the rRNA gene cluster undergoes gene amplification. The chromosome gives rise to extrachromosomal circular DNA carrying the rRNA gene cluster. From this ring, many more copies of circular DNA are synthesized via the rolling circle mechanism where a nick occurs in one strand of the circular DNA, and DNA polymerase uses free 3' end to synthesize a new strand of DNA, displacing the 5' end is displaced. Another nick is made to release the displaced strand that recircularizes and acts as a template to synthesize a complementary strand . Gene amplification allows more rRNA to be transcribed and more ribosomes to be formed, allowing for much more proteins to be synthesized after fertilization for rapid growth of the embryo. In the follicle cells of Drosophilla ovaries, the chorion gene cluster undergoes gene amplification. Multiple replications of a small region of the chromosome containing the chorion gene cluster occurs as replication is initiated and terminated randomly within the chorion gene cluster, giving rise to replication bubbles nested within larger replication bubbles . Gene amplification meets the demand for high levels of chorion mRNA and hence chorion protein which envelopes and protects the zygote. | | | | Histone
Acetylation and
Deacetylation | The addition of an acetyl group on lysine residues of histones by histone acetylase removes the positive charge of histones, reducing the electrostatic attraction between the positively charged histones and the negatively charged DNA. Hence, DNA is less tightly wound around histones and the promoter is more accessible to general transcription factors and RNA polymerase to form the transcription initiation complex, hence increasing the rate of transcription. The removal of an acetyl group on lysine residues of histones by histone deacetylase restores the positive charge of histones, increasing the electrostatic attraction between the positively charged histones and the negatively charged DNA. Hence, DNA is more tightly wound around histones and the promoter is less accessible to general transcription factors and RNA polymerase to form the transcription initiation complex, hence decreasing the rate of transcription. | | | | Regulation | Only Eukaryotes | | |---------------|------------------------------------|---|--| | | Chromatin
Remodeling
Complex | Chromatin remodeling complexes alter the structure of nucleosomes temporarily and change the accessibility of the promoter to RNA polymerase and general transcription factors by causing DNA to be more or less tightly coiled around histones . This decreases or increases the rate of transcription respectively. | | | | DNA
methylation | The addition of a methyl group to selected cytosine nucleotides in the sequence CG blocks the binding of general transcription factors to the promoters and hence preventing the formation of the transcription initiation complex . It also recruits DNA-binding proteins such as histone deacetylase to condense chromatin . In doing so, it prevents transcription . | | | Genomic Level | Organization of
DNA | Heterochromatin is highly compacted DNA that winds more tightly around histones , limiting the access of RNA polymerase and general transcription factors to the promoters of genes, preventing the transcription initiation complex from forming and hence is transcriptionally inactive . | | | Gen | | Euchromatin is less compacted DNA that winds less tightly around histones , promoting the access of RNA polymerase and general transcription factors to the promoters of genes to form the transcription initiation complex and hence is transcriptionally active . | | | | | Explain why the genome of eukaryotes is condensed. | | | | | Organization of DNA allows the long molecules of DNA to fit into the nucleus and prevents entanglement which might result in DNA breakage . It also allows for regulation of gene expression as DNA wound around histones prevents general transcription factors and RNA polymerase from accessing promoters of genes that are not required in differentiated cells . A large percentage of the genome is non-coding regions which may be highly condensed. | | | | Regulation | Eukaryotes | Prokaryotes | |-----------------------|-------------------------|---|--| | | Promoters | Critical elements within the promoter such as the TATA box at the -25 region determine the precise location of the transcription start site. CAAT and GC boxes help to recruit general transcription factors and RNA polymerase to the promoter to form the transcription initiation complex, making transcription more efficient. The similarity of critical elements to consensus sequences is not that crucial in controlling gene expression. | Critical elements in the promoter such as the Pribnow box at the -10 region and the -35 site determine the precise location of the translation start site . The greater the similarity of critical elements to the consensus sequence , the stronger the promoter and the higher the frequency of transcription . | | Transcriptional Level | Promoter
Recognition | Activators bind to enhancer sequences, increasing the frequency of transcription by promoting the assembly of the transcription initiation complex through the bending of spacer DNA that brings the activators, RNA polymerase and general transcription factors together at the promoter. Repressors bind to silencer sequences, decreasing the frequency of transcription by preventing the assembly of the transcription initiation complex. | The sigma factor binds to the core RNA polymerase to form the RNA polymerase holoenzyme which scans along the DNA and recognizes and binds to the promoter. Different sigma factors recognize different promoters . Hence, controlling the availability of sigma factors determines the genes that are transcribed. | | | Operons | Operons are not present as it does not allow for differentiation of cells. In addition, a gene product may be involved in several biochemical pathways and hence it is more efficient to express each gene independently than to have multiple copies of the same gene in several different operons. There are also homeostatic mechanisms that keep the internal environment stable reducing the need for fast responses. | Genes coding for proteins involved in same biochemical pathway are usually clustered together on one operon . The expression of these genes is regulated by the same operator same promoter and transcribed into a single polycistronic mRNA . An operon allows the regulation of a group of genes that encode functionally related gene products together. Repressor proteins that bind to the operator prevent RNA polymerase from binding to promoter , preventing gene transcription . | | | Regulation | Only Eukaryotes | | |-----------------|-------------|--|--| | Level | 5' Cap | A 7-methylguanosine cap is added to the 5' end of pre-mRNA shortly after transcription begins. This helps the cell to recognize mRNA amongst other RNA molecules so that subsequent steps such as splicing a polyadenylation can occur . The 5' cap acts as a signal to export mRNA out of the nucleus via nuclear pores , protects the growing pre-mRNA chain from degradation by ribonucleases , and is recognized by translation initiation factors bound to the sm ribosomal subunit such that initiation of translation can occur. | | | Transcriptional | Splicing | Spliceosomes, a complex of proteins and snRNA, excise introns and join together exons by recognizing the points of excision determined by the sequence of nucleotides at intron-exon boundaries. Splicing allows for alternative splicing to occur where different exons of a single pre-mRNA can be spliced such that different mature mRNAs are produced, allowing one gene to code for many different polypeptides. | | | Post | Poly-A Tail | The 3' end of pre-mRNA is cleaved enzymatically at a site downstream from the polyadenylation signal , AAUAAA. Immediately after the cleavage, poly-A polymerase adds a long sequence of adenosine monophosphate ribonucleotides, forming a poly-A tail during polyadenylation . The poly-A tail acts as a signal to export mature mRNA out of the nucleus via nuclear pores , protects mature mRNA from degradation by ribonucleases , and works with the 5' cap to regulate translational efficiency during initiation of translation. | | | | Regulation | Eukaryotes | Prokaryotes | |---------------------|--|--|---| | Translational Level | mRNA Stability | The stability of mRNA is determined by the length of its poly-A tail. The longer the poly-A tail, the longer the mRNA can be used as a template to make proteins. | mRNA has a relatively short half-life as they are rapidly degraded by RNases soon after they are synthesized. This allows bacteria to rapidly adjust the synthesis of proteins in response to environmental changes . | | | | The poly-A tail is removed by ribonucleases in the 3' to 5' direction until a critical length is reached, triggering removal of the 5' cap and degradation of the mRNA from the 5' end as well. | Anti-sense RNA which is complementary to part of the mRNA to be degraded can be synthesized, complementary base pairing with mRNA to form a double stranded RNA which then is targeted for degradation by ribonucleases and will block translation of mRNA. | | | Binding of Small
Ribosomal
Subunit | During translation initiation, the small ribosomal subunit binds to the 5' cap of mRNA. This can be prevented by the binding of translational repressors to the 5' cap or the 3' untranslated region , which interferes with the interaction between the 3' poly-A tail , the 5' cap and the small ribosomal subunit . | Initiation factors bind to the small ribosomal subunit and facilitate its binding to the Shine-Dalgarno sequence so that the start codon can be correctly position before the initiator tRNA and large ribosomal subunit can bind. | | | | | Binding of translational repressor proteins at the Shine-Dalgarno sequence prevents the small ribosomal subunit from binding. | | | | During translation initiation, translation initiation factors bind to the small ribosomal subunit and facilitate its binding to the 5' cap. The availability of activated initiation factors can be regulated through phosphorylation . | Binding of anti-sense RNA complementary to the mRNA near the Shine-Dalgarno sequence prevents the small ribosomal subunit from binding. | | | | | The availability of translation initiation factors can be regulated. | | _ | Regulation | Both Prokaryotes and Eukaryotes | |--------------------------|-----------------|---| | Post-Translational Level | Modification | Polypeptides can undergo covalent modification , such as attachment of prosthetic groups, glycosylation and disulfide bond formation, or cleavage to form functional proteins . In eukaryotes, this occurs in the rough endoplasmic reticulum and the Golgi apparatus . | | ransla | Phosphorylation | Proteins can be phosphorylated or dephosphorylated to activate or deactivate them. | | Post-T | Degradation | Proteins that are no longer needed can be degraded by proteasomes , determining how long the protein remains in a cell. Ubiquitin ligase catalyzes the addition of ubiquitin to the protein, which is then recognized by a proteasome and degraded. | L | | | | _ | - | |---|--------------| _ | |