Genetically Modified Organisms

Genetically Modified = The introduction of a foreign gene (<u>transgene</u>) from an unrelated species into the genome of an unrelated organism, resulting in the expression of that gene in the transgenic organism

Significance/Benefits of Transgenic Plants

Bt corn

- Source of gene:
 - Bt toxin gene from Bacillus thuringiensis
 - o Promoter decides which parts of the plant the gene is expressed in
- · Possible Techniques:
 - Agrobacterium vector containing modified Ti plasmid with Bt toxin gene inserted into protoplasts
 - Bombardment of callus using gene gun
 - Electroporation of protoplasts
- Gene product:
 - Transgenic corn expresses Bt gene to produce Bt toxin
 - Bt toxin kills specific insect pests which have specific enzymes in their gut that activates the Bt-toxin ⇒ Causes gut wall to break down
- Benefits
 - Crops not damaged ⇒ ↑ Yield + Quality of crops
 - ∘ ↓ Use of insecticides
 - ↓ Costs for farmers
 - ↓ Indiscriminate killing
 - No danger of insecticide runoff into the environment
 - Does not harm humans/other insects as Bt toxin is specific
 - Burrowing insects also affected by Bt-plants, not just surface dwelling insects
 - Biodegradable unlike synthetic pesticides

Golden rice

- Source of gene:
 - Phytoene synthase gene from daffodil
 - Carotene desaturase gene from Erwinia uredovora bacteria
 - Endosperm specific promoter
- Technique:
 - Genes inserted into Ti plasmids of *Agrobacterium tumefaciens* vector which is used to infect rice embryos in tissue culture
 - Transgenic rice plants crossed with local rice varieties to ensure that the rice is well adapted to local conditions
- Gene product:
 - Transgenic rice converts natural compound in rice to beta-carotene, a precursor of Vitamin A

Benefits:

 ↑ Nutritional quality ⇒ Prevents development of <u>night blindness</u> and reduces susceptibility to diseases in poor countries where people can't afford Vitamin A pills ⇒ Golden rice can form part of staple diet to supplement Vitamin A

Flavr Savr tomatoes

- Problem: Normal tomatoes tend to ripen rapidly and soften as polygalactonurase
 hydrolyses pectin in plant cell walls ⇒ Mushy fruits ⇒ Damaged during transport +
 Shorter shelf life ⇒ Farmers have to harvest tomatoes that are still green and allowed
 to ripen later ⇒ Less flavour ⇒ Loss of quality
- Source of gene:
 - Tomatoes modified with an antisense gene for polygalactonurase enzyme
- Technique:
 - Insert polygalactonurase antisense gene into Ti plasmids of Agrobacterium tumefaciens vector which is used to infect explants of tomatoes
- Gene product:
 - Transgenic tomato produces antisense polygalactonurase mRNA
 - Antisense mRNA binds to mRNA strand for polygalactonurase ⇒ Ribosome cannot gain access to mRNA + Double stranded RNA quickly degraded by RNases ⇒ Prevents translation of polygalactonurase mRNA into the polygalactonurase enzyme
- Benefits
 - Transgenic tomatoes allowed to ripen on the vine for longer while tomatoes remain firm ⇒ Fuller flavour ⇒ ↑ quality
 - Better shelf life ⇒ ↑ profits of retailer
 - Fruits less damaged after transportation ⇒ ↓ losses for farmer ⇒ ↑ profits

Glyphosate-resistant Soybean

- Problem: Herbicides tend to be broad spectrum in their effects and would harm both weeds and crop plants leading to loss of yield
- Source of gene:
 - EPSP gene coding for glyphosate-based herbicide resistance from CP4 strain Agrobacterium
- Gene product:
 - Bacterial gene codes for an enzyme that breaks down glyphosate herbicides
 - Weeds affected by herbicides but soybean plants not
- Benefits
 - ↑ Quality and yield of plants as ↓ competition for water and nutrients from weeds
 - Herbicides can be freely used to eliminate weeds without affecting the soybean crops

Significance/Benefits of Transgenic Animals

Atlantic salmon

- Source of gene:
 - Growth hormone gene from Chinook salmon
 - Promoter from ocean pout antifreeze gene
- Technique:
 - Microinjection of gene constructs (e.g. recombinant plasmids) into fertilised eggs of Atlantic Salmon
- Gene product:
 - Growth hormone gene expressed continuously throughout the year even during winter months
- Benefits:
 - ↑ Growth rate as able to grow throughout the year ⇒ Reach marketable size faster ⇒ ↑ Turnover rate ⇒ ↑ Yield ⇒ Salmon meat more readily available + Cheaper to consmers + ↑ Profits for producers
 - ↑ Feed conversion efficiency ⇒ ↓ Cost of feeding the fish ⇒ ↑ Profits for producers + Cheaper for consumers
 - Better environmental tolerance as growth hormone expressed continuously throughout the year
- Negative impacts:
 - Transgenic salmon may escape into the wild and outcompete wild type salmon
- Solution:
 - Only sterile, triploid female fish produced ⇒ Unable to reproduce even if they escape into wild
 - GM salmon farms located inland, far away from large water bodies

Heart-healthy meat

- Source of gene:
 - Fat-1 gene from roundworm Caenorhabditis elegans
- Gene product:
 - Transgenic pork contains 8% omega-3 fatty acids compared to only 1%
- Benefits:
 - 1 Level of omega-3 fatty acids protects against heart disease

Bovine somatotropin for injection into lactating cows

- Source of gene:
 - BST gene
- Technique:
 - BST gene ligated to a vector which is used to transform E. coli
 - Transformed E. coli expresses BST gene which is used to produce large quantities of BST
 - BST extracted, purified and injected into lactating cows
- Benefits:
 - \uparrow Milk to feed ratio + \uparrow Milk yield + \uparrow Weight of cattle \Rightarrow \uparrow Profits for farmers

- Negative impacts:
 - 1 Incidence of mastitis
 - ↑ Costs due to constant injections
 - No respect for animals

Porcine somatotropin for injection into pigs

- Source of gene:
 - PST gene
- Technique:
 - PST gene ligated to a vector which is used to transform E. coli
 - Transformed E. coli expresses PST gene which is used to produce large quantities of PST
 - PST extracted, purified and injected into lactating cows
- Benefits:
 - \uparrow Feed efficiency \Rightarrow \uparrow Growth rate \Rightarrow \uparrow Profits
 - ↓ Fat content ⇒ Leaner meat ⇒ ↑ Nutritional qualities
- Negative impacts:
 - 1 Joint and skeletal problems
 - ↑ Costs due to constant injections
 - No respect to animals

Negative Social Implications + Solutions (possible essay)

Environmental

- † Pest resistance
 - Pest resistant crops act as selection pressure ⇒ Resistant pest selected for ⇒
 Proliferation of resistant individuals in the population
 - Solutions:
 - Release sterilised adult insects into the wild ⇒ Resistant insects due to random mutations very rare, likely to end up breeding with sterilised moths ⇒ Will not produce resistant offspring
 - Change a small part of the toxin gene to produce toxins that the pests are now susceptible to
- Creation of superweeds
 - Herbicide resistant genes could be passed to related weed species via <u>cross-pollination/horizontal gene transfer</u> ⇒ GM <u>crop-weed hybridisation</u> ⇒ Creation of superweeds
 - Farmers incur more costs trying to eliminate these super weeds from infiltrating their farmlands
 - Solutions:
 - Greater isolation distances by planting border of unrelated plants
 - Buffer zones around GM crops to reduce gene flow
- Negative effect on biodiversity
 - GM organisms may outcompete native species due to increased competitive

abilities ⇒ Disrupt natural ecosystem

- Solutions:
 - GM salmon engineered to be triploid, rendering them sterile to prevent them from interbreeding with wild type salmon
 - Grown in land-based containers far from rivers/oceans, reducing risk of escaping into the wild
- Non-target organisms may be adversely affected
 - Accumulation of toxins in predators of BT plant's pests
 - Loss of food source of predators due to death of pests
 - BT pollen may be transferred to other plants, killing insects that feed on those plants

Medical

- Toxicity
 - May produce secondary metabolites that may be toxic to humans/livestock
 - Toxins not normally harmful may react with chemicals in the body
 - Solution:
 - Safety assessments and regulations
- Allergies
 - Allergenic properties of food proteins from a source that causes an allergic effect may be conferred onto host plant (e.g. Nuts)
 - Solution:
 - Safety assessments and regulations
- Antibiotic resistance marker genes
 - May be transferred to environmental bacteria or bacteria in human intestine ⇒
 Development of antibiotic resistant bacterial strains
 - Solutions:
 - Removal of marker genes before commercialisation
 - Use of other selectable markers e.g. X-gal/Fluorescence tags
- Nutritional qualities of GM crops
 - Introduction of foreign genes may alter nutritional quality of crops into forms that cannot be metabolised/absorbed ⇒ Disruption in balance of nutrients
 - Solution:
 - Adequate safety assessments and regulations to ensure safety for consumption

Negative Ethical Implications + Solutions (possible essay)

- Exploitation of animals for food and medical research may cause suffering in animals
 - e.g. Animals may not be biologically capable of withstanding <u>additional stress</u> in
 † growth rate/† production of milk etc
 - e.g. Oncogene introduced into mouse to investigate effect of oncogene ⇒
 Cancer in the mouse

- Cloning techniques may be applied to humans → Unnatural
- Allows for **eugenics**
 - Babies may be produced by introducing favourable genes using techniques from genetic modification
 - Exacerbates social and income inequality as not everyone can afford the technology + Decreased tolerance for human diversity
- Religious implications
 - GM food may contain genes from prohibited foods of certain religious and ethnic groups
 - Solutions:
 - Label GM food

Genetic Engineering in Plants

Vector: Agrobacterium tumecfaciens

 Soil dwelling bacterium → Contains Ti plasmid → T-DNA region can insert into genome of infected plant cell

Technique

- Ti plasmid isolated from A. tumefaciens
- Tumour inducing genes removed from Ti plasmid + Insert selectable marker e.g. Kanamycin/Herbicide resistance
- Make a recombinant plasmid containing gene of interest
 - o Gene of interest linked to plant promoter so that gene can be expressed in plant cell
 - Gene of interest and Ti plasmid cut using same restriction enzymes ⇒ Produces complementary sticky ends ⇒ Gene anneals with Ti plasmid via complementary base pairing
 - DNA ligase forms phosphodiester bonds between adjacent nucelotides ⇒ Seals the nick
- Transfer recombinant plasmid into plant cell genome using *A. tumecfaciens* vector via protoplast culture
- Ti plasmid integrates T-DNA region into plant chromosomal DNA
- Select for transformed cells using Kanamycin/Herbicide-containing media
- Using plant tissue culture techniques, induce callus formation from transformed cells ⇒ Generate an adult plant