Enzymes | | Describe the mode of action of enzymes. | | |--|--|--| | Interaction and
Binding | Enzymes have an specific active site which is complementary in shape and charge to the substrate. Effective collisions between the enzyme and substrate cause the substrate to bind to the enzyme to form a temporary enzyme-substrate complex . The enzyme-substrate complex is held together by weak interactions such as hydrogen bonds , ionic bonds , and hydrophobic | | | Catalysis
(Choose 2) | a. Aligning substrates next to each other in the active site, increasing the chances of reaction in the proximity effect. b. Causing strain on the bonds in the substrate to be broken as they bind to the active site, increasing the chances of bond breakage in the strain effect. c. Orientating the substrate such that its bonds are exposed to attack in the orientation effect. d. Providing a favorable microenvironment for reaction in the microenvironment effect. e. Participating directly in catalysis with R groups of amino acid residues in acid-base catalysis. This increases the proportion of substrate molecules with energy greater than the activation energy, allowing the reaction to proceed faster than an uncatalyzed reaction. | | | Release Products no longer fit active site and are released . The enzyme is unchanged and can be used again. | | | | ıes | Structural Residues | They interact with each other to maintain the overall 3D conformation of the protein. | | |----------------------|------------------------|---|--| | Amino Acids Residues | Contact Residues | They are found in the active site and hold the substrate in the correct orientation in the active site by weak interactions such as hydrogen bonds and ionic bonds. | | | nino Acio | Catalytic Residues | They are found in the active site and act on the bonds in the substrate, catalyzing the conversion of substrate to product. | | | Ar | Non-Essential Residues | Non-essential residues are found on the surface of the protein and have no specific function. | | | Active Site | Structure | Describe how amino acid residues at different positions in the protein may be brought together in the active site. The primary structure of the polypeptide is the sequence of amino acids which determines its secondary and tertiary structure . The polypeptide is folded into its secondary structure such as the α -helix and β -pleated sheets through hydrogen bonding between the -CO and -NH groups of the polypeptide backbone. The secondary structure is further folded into its tertiary structure via hydrogen bonds , ionic bonds , hydrophobic interactions and disulfide linkages which are formed between the different R groups of the amino acids. The folding of polypeptide thus results in a globular structure where the amino acids are brought closer together at the active site. | | | | Denaturation | Explain the effect of denaturation on the enzyme active site. Denaturation results when the hydrogen bonds , ionic bonds and hydrophobic interactions that stabilize the 3D conformation of the enzyme are broken . Hence, the conformation of the active site is altered such that it is no longer complementary in shape and charge to the substrate. | | | | K_{m} | The substrate concentration where the reaction proceeds at half its maximum rate . The lower the K_m , the higher the affinity of the enzyme for the substrate. | | | Enzyme Cofactors | Inorganic Ions | Mold the enzyme or substrate and allow the enzyme-substrate complex to form more easily . Example: Mg ²⁺ in PCR. | |------------------|------------------|--| | | Prosthetic Group | Permanently bound to the enzyme and transfers chemical groups between the active site of the enzyme and another substance. Example: Heme group in cytochrome oxidase in the electron transport chain accepts electrons from cytochrome C and transfers them to water. | | | Coenzymes | Organic molecules that are required by certain enzymes to carry out catalysis. They bind to the active site of the enzyme and participate in the catalysis but are not considered substrates. They function as intermediate carriers of electrons or atoms that are transferred in the reaction. Example: NADH in respiration. | | Explain how temperature affects the rate of an enzyme catalyzed reaction. | | | |---|---|--| | Before Optimum
Temperature | Before the optimum temperature is reached, increasing temperature increases the kinetic energy of substrate and enzyme molecules, increasing the frequency of effective collisions between enzyme and substrate and hence the rate of formation of enzyme-substrate complexes . | | | | Increasing temperature also increases the proportion of substrate molecules with energy exceeding the activation energy necessary for the reaction to proceed. The rate of reaction typically doubles with every 10°C increase in temperature. | | | Optimum
Temperature | Maximum rate of reaction is reached at the optimum temperature. | | | Beyond Optimum
Temperature | Increases in temperature beyond the optimal results in a drastic drop in rate of reaction as it increases intramolecular vibrations within the enzyme, breaking weak interactions such as hydrogen bonds , ionic bonds and hydrophobic interactions that determine the enzyme conformation, resulting in denaturation of the enzyme. | | | remperature | The active site is thus no longer complementary in shape and charge to the substrate. Hence, less enzyme-substrate complexes can be formed and the rate of reaction decreases. | | | Explain how pH affects the rate of an enzyme catalyzed reaction. | | | |--|---|--| | Optimum pH | Each enzyme has an optimum pH at which the rate of the enzyme-catalyzed reaction is maximum as the shape and charge of the active site is most ideal for substrate binding . | | | | Any deviation from the optimum pH results in excess H ⁺ or OH ⁻ ions, affecting the ionization of R groups of charged amino acids, with -COOH groups become -COO ⁻ groups in excess OH ⁻ and -NH ₂ groups becoming -NH ₃ ⁺ groups in excess H ⁺ . | | | Deviation from
Optimum pH | When charges on R groups of structural residues are altered, ionic bonds and hydrogen bonds which maintain the overall 3D conformation of the enzyme are disrupted, resulting in denaturation of the enzyme. The interaction between the substrate and the enzyme active site is also disrupted. The specific charges of the R groups of catalytic residues or contact residues in the enzyme active site may be changed, causing a loss in catalytic activity and affecting the binding of the enzyme and substrate respectively. | | | | Hence, the enzyme active site is no longer complementary in shape and charge to the substrate and less enzyme-substrate complexes are formed. Hence, there is a lower rate of reaction. | | | Explain how enzyme concentration affects the rate of an enzyme catalyzed reaction. | | | |--|---|--| | Linear Portion | At low enzyme concentration, as enzyme concentration increases, the frequency of effective collisions between the enzyme and substrate molecules increases, increasing the rate of enzyme-substrate complex formation and hence increasing the rate of reaction proportionally . | | | Curved Portion | As enzyme concentration increases, it is not the only limiting factor , and some other factors are also limiting. | | | Plateau | Eventually, enzyme concentration is no longer limiting and some other factors are limiting. Increasing enzyme concentration will not increase the rate of reaction. | | | Explain how substrate concentration affects the rate of an enzyme catalyzed reaction. | | | |---|---|--| | Linear Portion | At low substrate concentration, as substrate concentration increases, the frequency of effective collisions between the enzyme and substrate molecules increases, increasing the rate of enzyme-substrate complex formation and hence increasing the rate of reaction as the active sites of the enzymes are readily available to catalyze the reaction and substrate concentration is limiting | | | Curved Portion | As substrate concentration increases, the rate of reaction increases as more active sites are occupied by substrates. | | | Plateau | Eventually, all active sites of enzymes are saturated with substrate at any one time and hence enzyme concentration instead of substrate concentration becomes limiting . Further increase in substrate concentration will not increase the rate of reaction. | | | | Compare competitive and non-competitive inhibitors. | | | |----------------------------------|---|--|--| | Point of Comparison | Competitive Inhibitors | Non-Competitive Inhibitors | | | Structure | Similar in shape and charge to the substrate. | Not similar in shape and charge to the substrate. | | | Binding Site | Competes with the substrate for the active site , binding reversibly to active site to block substrate binding. | Binds to site other than active site . | | | Effect | Decreases the rate of enzyme-substrate complex formation and hence the rate of reaction. $K_{\rm m}$ decreases. | Changes the conformation of the active site , such that it is no longer complementary in shape and charge to the substrate. Forms an enzyme-inhibitor complex hence decreases the availability of the enzymes for substrate binding and the rate of enzyme-substrate complex formation and hence the rate of reaction. K_m remains the same. | | | High Substrate
Concentrations | At high substrate concentrations, the effects of the competitive inhibitor can be overcome as the higher proportion of substrate molecules can outcompete the inhibitor molecules for the active site . Hence, at high substrate concentrations, the rate of reaction is the same as that when no inhibitor is present. Hence, V_{max} is the same. | The effects of the non-competitive inhibitor ${\bf cannot}$ be ${\bf overcome}$ at high substrate concentrations. Hence, V_{max} decreases. | | ## Describe the regulation of an allosteric enzyme. An allosteric enzyme is typically **multimeric**, comprising of two or more subunits, each with their own **active sites** and **allosteric sites**. The enzyme oscillates between **two conformational states** – the **active conformation** and the **inactive conformation**. **Allosteric activators** and **inhibitors** are both **not similar** in shape and charge to the substrate and bind to the enzyme at the **allosteric sites**. The binding of an **allosteric activator stabilizes** the enzyme in its **active conformation** and increases the rate of reaction while binding of an **allosteric inhibitor stabilizes** the enzyme in its **inactive conformation** and decreases the rate of reaction.